
Composable and Hygienic
Typed Syntax Macros (TSMs)	

Cyrus Omar
Chenglong (Stanley) Wang
Jonathan Aldrich

School of Computer Science
Carnegie Mellon University

[DSLDI14]

2	

Traditionally: Specialized syntax requires the
cooperation of the language designer.

Syntax Language Library

3	

Better approach: an extensible language where
derived syntax can be distributed in libraries.

Core Wyvern

Syntax Language Library

4	

Important Concerns

import kdb
import collections as c

...

let name = “test”
let q = {(!R)@&{&/x!/:2_!x}'!R}
let z = {name => q}

Hygiene: Can I safely rename name?

Composability: Can there be parsing
ambiguities (w/base language?)
(w/other extensions?)

Typing Discipline: What type do these terms have?

Identifiability: Is this controlled by a
syntax extension? Which one?

5	

import kdb
import collections as c

let name = “test”
let q : kdb.Query = {(!R)@&{&/x!/:2_!x}'!R}
let z : c.Map(string, kdb.Query) = {name => q}

Hygiene: Can I safely rename name? Identifiability: Is this controlled by a
syntax extension? Which one?

Type-Specific Languages (TSLs)
[Omar, Kurilova, Nistor, Chung, Potanin and Aldrich, ECOOP 2014]

Composability: Can there be parsing
ambiguities (w/base language?)
(w/other extensions?)

Typing Discipline: What type do these terms have?

6	

Limitations of TSLs
l  Only one choice of syntax per type
l  Cannot specify syntax for a type

you don’t control
l  Can’t capture idioms that aren’t

restricted to one type
l  Control flow
l  API protocols

l  Can’t use specialized syntax to
define types themselves

7	

Limitations of TSLs
l  Only one choice of syntax per type
l  Cannot specify syntax for a type

you don’t control
l  Can’t capture idioms that aren’t

restricted to one type
l  Control flow
l  API protocols

l  Can’t use specialized syntax to
define types themselves

Synthetic TSMs

Analytic TSMs

Type-Level TSMs

Synthetic TSMs

8	

syntax Q => Query = (* ... *)

import kdb
import collections as c

let name = “test”
let q = kdb.Q {min x mod 2_til x}
let z : c.Map(str, kdb.Query) = {name => q}

Typing Discipline: What type will these terms have?

Identifiability: Is this controlled by a
syntax extension? Which one?

Composability: Can there be parsing
ambiguities (w/base language?)
(w/other extensions?)

Hygiene: Can I safely rename name?

from web import HTML

let greeting : HTML = H1Element({}, TextNode(“Hello!”))

9	

type HTML = casetype
 TextNode of string
 BodyElement of Attributes * HTML

 H1Element of Attributes * HTML
 (* ... *)

HTML

from web import HTML

let greeting : HTML = H1Element({}, TextNode(“Hello!”))
web.respond(~) (* web.respond : HTML -> () *)
 <html>
 <body>
 <{greeting}>
 </body>
 </html>

10	

type HTML = casetype
 TextNode of string
 BodyElement of Attributes * HTML

 H1Element of Attributes * HTML
 (* ... *)

HTML TSL

HTML TSL

11	

from web import HTML

let greeting : HTML = H1Element({}, TextNode(“Hello!”))
web.respond(~) (* web.respond : HTML -> () *)
 <html>
 <body>
 <{greeting}>
 </body>
 </html>

type HTML = casetype
 TextNode of string
 BodyElement of Attributes * HTML

 H1Element of Attributes * HTML
 (* ... *)

 metadata = new : HasTSL
 val parser : Parser(Exp) = ~
 start <- “<body” attrs “>” start “</body>”
 fn a, c => ‘BodyElement($a, $c)’
 start <- “<{“ EXP “}>”
 fn spliced => spliced

HTML TSM

12	

from web import HTML, simpleHTML

let greeting : HTML = H1Element({}, TextNode(“Hello!”))
web.respond(simpleHTML ~) (* web.respond : HTML -> () *)
 >html
 >body
 < greeting

syntax simpleHTML => HTML = ~ (* : Parser(Exp) *)
 start <- “>body”= attrs> start>
 fn a, c => ‘BodyElement($a, $c)’

 start <- “<“= EXP>
 fn spliced => spliced

13	

Limitations of TSLs
l  Only one choice of syntax per type
l  Cannot specify syntax for a type

you don’t control
l  Can’t capture idioms that aren’t

restricted to one type
l  Control flow
l  API protocols

l  Can’t use specialized syntax to
define types themselves

Synthetic TSMs

Analytic TSMs

 Analytic TSMs

14	

type bool = casetype
 True
 False

def f(error : bool, response : HTML) : HTML
 case(error)
 True => simpleHTML ‘>h1 Oops!’
 False => response

 Analytic TSMs

15	

type bool = casetype
 True
 False

syntax if = ~ (* : Parser(Exp) *)
 start <- EXP BOUNDARY EXP BOUNDARY “else” BOUNDARY EXP
 fn (e1, e2, e3) => ~
 case($e1)
 True => $e2
 False => $e3

def f(error : bool, response : HTML) : HTML
 if [error] (simpleHTML ‘Oops!’) else (response)

Can only be used in an
analytic position.

4-part delimited form

16	

Limitations of TSLs
l  Only one choice of syntax per type
l  Cannot specify syntax for a type

you don’t control
l  Can’t capture idioms that aren’t

restricted to one type
l  Control flow
l  API protocols

l  Can’t use specialized syntax to
define types themselves

Synthetic TSMs

Analytic TSMs

Type-Level TSMs

Type-Level TSMs

17	

import SQL

type StudentDB = SQL.schema ~
 *ID int
 Name varchar(256)

type StudentDB = objtype
 type Entry = objtype
 val ID : int
 val Name : string
 def getByID(ID : int) : Option(Entry)
 def updateByID(ID : int, entry : Entry)
 def getByName(Name : string) : List(Entry)
 val connection : SQL.Connection
 metadata = new : HasTSL
 val parser = ~
 ...

syntax schema :: * with metadata : HasTSL = ~ (* Parser(Type * HasTSL) *)

Kinding Discipline: What kind will these types have?

let db : StudentDB = ~
 url [http://localhost:2099/]
 username “test”
 password “wyvern6”
let entry = db.getByID(758)

18	

Limitations of TSLs
l  Only one choice of syntax per type
l  Cannot specify syntax for a type

you don’t control
l  Can’t capture idioms that aren’t

restricted to one type
l  Control flow
l  API protocols

l  Can’t use specialized syntax to
define types themselves

Synthetic TSMs

Analytic TSMs

Type-Level TSMs

Typing Discipline / Kinding Discipline

Identifiability Composability Hygiene

19	

Bidirectionally Typed Elaboration Semantics	Abstract Forms Concrete Forms
Programs ⇢ ::= d; e
Declarations d ::=
;
d; syntsm(s, ⌧, e) syntax s : ⌧ = e
d;anatsm(s, e) syntax s = e
d; tytsm(s,, ⌧, e) syntax s :: with metadata:⌧ = e
d; tydecl(T, ⌧, e) type T = ⌧

metadata = e
d; tyaptsm(T, s, body, e) type T = s dform

metadata e
External Terms e ::= ...
lit[body] dform
eaptsm[s, body] s dform

Translational Terms ê ::= ... | spliced[e]
Internal Terms i ::= ...

Figure 9: Abstract and concrete forms for declara-
tions and terms. Metavariable s ranges over TSM
names, T over type names, dform over delimited
forms, per Figure 3, and body over their bodies.
Translational and internal terms are used in the se-
mantics only. Elided forms are given in [8].

Kinds ::= ? | !
Types ⌧ ::= T | ⌧ ! ⌧ | objtype[!] | casetype[�]

| t | �[](t.⌧) | ⌧(⌧)
Translational Types ⌧̂ ::= ... | spliced[⌧]

Figure 10: Syntax for types and kinds. Metavariable
t ranges over type variables. Object type and case
type declarations ! and � are taken from [8].

by checking that it’s kind is ? in an empty kinding context.
Kinding contexts are simply mappings from type variables
to kinds and the key kinding rules are shown in Figure 14.
We will return to them when discussing type declarations be-
low. Finally, e

tsm

is analyzed against Parser(Exp), defined
in the prelude. It must be a closed term, so the kinding and
typing contexts are empty (it can use the named types and
TSMs declared previously, however). Once these checks are
complete, the definition of s is added to . The rule for
analytic TSM declarations, (D-anatsm), is nearly identical,
di↵ering only in that no kind check is needed.

Term-level TSM application is captured by the abstract
form eaptsm[s, body], where s is the name of the TSM and
body is the body of the delimited form, per Sec. 3. The rule
(T-syn) shows how typing and elaboration for a synthetic
TSM proceeds. First, the definition of s is extracted from .
Then, a parse stream is constructed on the basis of body. We
assume the relation parsestream(body) = i

ps

is defined such
that i

ps

is a closed term of type ParseStream. Then, the
parse method of the TSM implementation is invoked with
the parse stream. The judgement i + i0 captures evaluation
of i to a value, i0. Our internal language is identical to that
in [8], so we omit the rules. As suggested by the declarations
in Figure 2, the result is either a parse error or a valid parse,
written OK(i

exp

), where i
exp

is a value of type Exp. Here, we
simply leave the error case undefined – the typing judgement
cannot be derived if there is a parse error.

The dereification judgement i " ê, defined in [8], takes
a value of type Exp to a corresponding translational term,

TSM Contexts

 ::= ; | , s[ty(, ⌧, i)] | , s[syn(⌧, i)] | , s[ana(i)]
Named Type Contexts ⇥ ::= ; | ⇥, T[⌧ :: , i : ⌧]
Typing Contexts � ::= ; | �, x : ⌧
Kinding Contexts � ::= ; | �, t ::

Figure 11: Syntax for contexts.

�;� ` ⇥ e i) ⌧

s[syn(⌧, i
tsm

)] 2 parsestream(body) = i
ps

i
tsm

.parse(i
ps

) + OK(i
exp

) i
exp

" ê

�; ;;�; ; ` ⇥ ê i (⌧
(T-syn)

�;� ` ⇥ eaptsm[s, body] i) ⌧

s[ana(i
tsm

)] 2 parsestream(body) = i
ps

i
tsm

.parse(i
ps

) + OK(i
exp

) i
exp

" ê

�; ;;�; ; ` ⇥ ê i (⌧
(T-ana)

�;� ` ⇥ eaptsm[s, body] i (⌧

Figure 13: Statics for Keyword Invocation

ê. Translational terms mirror external terms but include an
additional form, spliced[e], which captures portions of the
parse stream parsed as a spliced term. The case Spliced
of case type Exp, which takes a (portion of) a parse stream,
dereifies to this form. This permits us to ensure that only
spliced portions of parse streams can refer to variables in the
surrounding scope (and no others), ensuring that hygiene is
maintained.
This is technically accomplished by the judgements

�
out

;�
out

;�;� ` ⇥ ê ; i)(()⌧

which can be read “under outer typing and kinding con-
texts �

out

and �
out

and inner typing and kinding contexts
� and �, ê elaborates to internal term i and (synthesizes/-
analyzes against) type ⌧”. These judgements behave iden-
tically to the corresponding judgements for external terms,
using the inner typing and kinding contexts, until a term of
the form spliced[e] is encountered. The outer contexts are
then used. The relevant rule can be found in [8], and an
analagous type-level rule will be shown below. In the rules
for TSLs and TSMs, (T-syn) and (T-ana), the inner con-
texts begin empty so only variables inside spliced terms can
refer to outer variables. A parse function that generated,
for example, Var(’x’), would not typecheck, because it cap-
tures a variable that it cannot know exists. An occurrence
of a variable x inside a spliced portion (e.g. between <{ and
}> when using the HTML TSL) would be checked in the outer
context and thus be acceptable. Parse streams cannot be
created manually, so this guarantee is strict.
In the rule (T-syn), the type that ê is being analyzed

against is determined by the definition of the TSM. The rule
(T-ana) is essentially identical, but the type is determined
by the type that the whole application is being analyzed
against instead, consistent with the descriptions in Sec. 3.

5.2 Type Declarations
The rule (D-tydecl) shows how explicit named type decla-

rations (those which do not apply a type-level TSM) work.
First, the preceding declarations are processed and we en-
sure that no other type named T was declared. Then, we

Types Organize Languages	

20	

l  Types represent an organizational unit for programming
languages and systems.

l  They can be used for more than just ensuring that programs
cannot go wrong:
l  Syntax extensions (TSLs and TSMs)
l  IDE extensions (Omar et al., “Active Code Completion”, ICSE 2012)

l  Type system extensions (talk to me) Figure 1. (a) An example code completion palette associated with the Color class. (b) The source code generated by this palette.

In accordance with best practices, we sought to address
the following questions before designing and implementing
our active code completion system:

• What specific use cases exist for this form of active
code completion in a professional development setting?

• What general criteria are common to types that would
and would not benefit from an associated palette?

• What are some relevant usability and design criteria for
palettes designed to address such use cases?

• What capabilities must the underlying active code com-
pletion system provide to enable these use cases and
user interface designs?

To help us answer these questions, we conducted a survey
of 473 professional developers (Section II). Their responses,
along with information gathered from informal interviews
and code corpus analyses, revealed a number of non-trivial
functional requirements for palette interfaces as well as the
underlying active code completion architecture (Section III).
Participants also suggested a large number of use cases,
demonstrating the broad applicability of this technique. We
organize these into several broad categories (Section IV).

Next, we describe Graphite, an Eclipse plug-in that imple-
ments the active code completion architecture for the Java
programming language (Section V), allowing Java library
developers to associate custom palettes with their own
classes. We describe several design choices that we made
to satisfy the requirements discovered in our preliminary
investigations and briefly examine necessary trade-offs.

Finally, we conducted a pilot lab study with a more
complex palette, implemented using Graphite, that assists
developers as they write regular expressions (Section VI).
The study provides specific evidence in support of the
broader claim that highly-specialized tools that are inte-
grated directly with the editing environment are particularly
useful. We conclude that active code completion systems
like Graphite are useful because they make developing,
deploying and discovering such tools fundamentally simpler.

II. SURVEY

To validate our general conceptualization of active code
completion, develop concrete criteria to constrain our system

and palette designs, and create a list of use cases to justify
this effort, we began by conducting a large survey of
professional software developers.

A. Participants

We recruited participants for this survey3 primarily from
a popular programming-related discussion forum hosted on
the popular website reddit.com [12]. An additional 22 par-
ticipants were computer science graduate students at CMU.

Recruitment materials in both cases stated that we were
seeking developers “familiar with an object-oriented pro-
gramming language like Java, C# or Visual Basic and an
integrated development environment like Eclipse or Visual
Studio”. Participants were told that the survey would take
approximately 20 minutes to complete, and no reward was
offered. Of the 696 people who started the survey, 473
participants (68%) completed it. We examine the responses
from completed surveys only in the analyses below.

B. Familiarity with Programming Languages and Editors

We first asked participants about their level of familiarity
with several programming languages, on a five-point Likert
scale4. 61.1% of the participants indicated that they were
an expert in at least one language, and an additional 35.7%
were “very familiar” with at least one language. On average,
participants rated themselves as very familiar with Java, C,
C++ and JavaScript, familiar with C#, Python and PHP and
somewhat familiar with Visual Basic and Perl.

We also asked participants to select which integrated
development environments (IDEs) and code editors that they
were familiar with. The Eclipse IDE was familiar to 87.1%
of participants. This was followed by Visual Studio at 66.0%,
Vi/Vim at 53.7%, Netbeans at 37.7%, Emacs at 24.8% and
IntelliJ IDEA at 16.4%. Participants could also enter “other”
choices and a number of editors and IDEs were entered,
including Xcode, Textmate and Notepad++.

3https://www.surveymonkey.com/s/2GLZP8V
4“None”, “Somewhat familiar”, “Familiar”, “Very familiar”, “Expert”

