
Scaling Up Symbolic Reasoning for
Relational Queries

Chenglong Wang, Alvin Cheung, Ras Bodik

University of Washington

!1

or, speeding up debugging & verification of database queries

Relational Queries
• The language between human and relational databases (tables)

Select
(filter & projection)

!2

Select val
From T
Where color = red;

Relational Queries
• The language between human and relational databases (tables)

Select
(filter & projection) Join

!3

Select val
From T
Where color = red; T1 Join T2 On T1.color=T2.color;

Relational Queries
• The language between human and relational databases (tables)

Select
(filter & projection) Join

Group
& Aggregation

!4

Select val
From T
Where color = red; T1 Join T2 On T1.color=T2.color;

Select color, Sum(val)
From T
Group by color;

“The Count Bug”

!5

1982 “On Optimizing an

SQL-like Nested Query” (Kim Won)

Rewrite rules for nested queries

Select R.ck
From R
Where R.ch = (Select Agg(S.cm)
 From S
 Where S.cn = S.cp);

S’ = (Select S.cn, Agg(S.cm)
 FROM S
 Group By S.cn):

Select R.ck
From R
Where R.ch = (Select Agg(S’.cm)
 From S’
 Where T’.cn = R.cp);

q1 q2

“The Count Bug”

!6

1982 “On Optimizing an

SQL-like Nested Query” (Kim Won)

1987 “Optimization of Nested SQL

Queries Revisited” (Ganski & Wong)

Rewrite rules for nested queries

Select R.ck
From R
Where R.ch = (Select Agg(S.cm)
 From S
 Where S.cn = S.cp);

S’ = (Select S.cn, Agg(S.cm)
 FROM S
 Group By S.cn):

Select R.ck
From R
Where R.ch = (Select Agg(S’.cm)
 From S’
 Where T’.cn = R.cp);

q1 q2

q1

q2

Found a bug in the 1982 paper!

Reasoning Tasks

Mutation testing / Grading

“Find a distinguishing input between queries.”

q
Property Checking (for optimization)

“Can the query return empty output on SOME input?”

Verification

“Are two queries equivalent on ALL inputs”q, q’

q, q’

q ≡ q’

q(T) = empty

q(T) ≠ q’(T)

!7

Relational Queries

……

tens to hundreds of HUGE tables

generated by computer

complex analytical functions

plays important roles in industry

“analyze
transition
history”

highly optimized

can’t afford 5 years to find a bug!

!8

Automatic Reasoning

!9

q1, q2

(queries)
assert q1≠q2

(property)

unsatisfiable
(proved q1=q2)

found T,
q1(T)≠q2(T)

q1, q2

(queries)
assert q1≠q2

(property)

unsatisfiable
(proved q1=q2)

found T,
q1(T)≠q2(T)

Check whether q1 is equivalent to q2 (on ALL inputs)

Automatic Reasoning

!10

q1, q2

(queries)
assert q1≠q2

(property)

unsatisfiable
(proved q1=q2)

found T,
q1(T)≠q2(T)

q1, q2

(queries)
assert q1≠q2

(property)

unsatisfiable
(proved q1=q2)

found T,
q1(T)≠q2(T)

Check whether q1 is equivalent to q2 (on ALL inputs)

(unbounded)
equivalence

is undecidable

Symbolic Reasoning

!11

q1, q2

(queries)
assert q1≠q2

(property)

unsatisfiable
(proved q1=q2)

found T,
q1(T)≠q2(T)

q1, q2

(queries)
assert q1≠q2

(property)

unsatisfiable
(proved q1=q2)

found T,
q1(T)≠q2(T)

(search space)

tables
with at most

k rows

Check whether q1 is equivalent to q2 (on ALL inputs within a search space)

Symbolic Reasoning

Solver

“Check whether q1, q2 are equivalent on ALL tables with at most k tuples”

!12

(1) Target queries

(2) Search space

(3) Property

q1(T) ≠ q2(T)

tables with at
most k rows

q1: Select id, val
 From T

 Where id > 1

q2: Select id, val
 From T

 Where id ≠ 1

Symbolic Reasoning

Solver

id val
0 1
1 2

q1

id val
(empty)

q2

id val
0 1

!13

(1) Target queries

(2) Search space

(3) Property

q1(T) ≠ q2(T)

tables with at
most k rows

q1: Select id, val
 From T

 Where id > 1

q2: Select id, val
 From T

 Where id ≠ 1

“Check whether q1, q2 are equivalent on ALL tables with at most k tuples”

Symbolic Reasoning

Solver

(1) Target queries

(2) Search space

(3) Property

Tout1 ≠ Tout2

q1, q2

tables with at
most k rows

Grouping
& aggregation
“ Select f(val)
 From T

 Group By id ”

!14

“Check whether q1, q2 are equivalent on ALL inputs within size k”

Symbolic Reasoning

Solver

(1) Target queries

(2) Search space

(3) Property

Tout1 ≠ Tout2

q1, q2

tables with at
most k rows

Grouping
& aggregation
“ Select f(val)
 From T

 Group By id ”

!15

“Check whether q1, q2 are equivalent on ALL inputs within size k”

id val
x1 y1

x2 y2

…
xk yk

id val
1 y1

2 y2

…
k yk

id val
1 y1

1 y2

…
1 yk

id val
1 y1

1 y2

…
2 yk

…

Exponential ways to
partition the table

Symbolic Reasoning

Solver

(1) Target queries

(2) Search space

(3) Property

Tout1 ≠ Tout2

q1, q2

tables with at
most k rows

Grouping
& aggregation

Computationally
expensive

Tout1 ⊂ Tout2 & Tout2 ⊂ Tout1

“ Select f(val)
 From T

 Group By id ”

!16

“Check whether q1, q2 are equivalent on ALL inputs within size k”

id val
x1 y1

x2 y2

…
xk yk

id val
1 y1

2 y2

…
k yk

id val
1 y1

1 y2

…
1 yk

id val
1 y1

1 y2

…
2 yk

…

Exponential ways to
partition the table

Symbolic Reasoning

Solver

(1) Target queries

(2) Search space

(3) Property

Tout1 ≠ Tout2

q1, q2

tables with at
most k rows

Grouping
& aggregation

Computationally
expensive

Tout1 ⊂ Tout2 & Tout2 ⊂ Tout1

“ Select f(val)
 From T

 Group By id ”

!17

“Check whether q1, q2 are equivalent on ALL inputs within size k”

id val
x1 y1

x2 y2

…
xk yk

id val
1 y1

2 y2

…
k yk

id val
1 y1

1 y2

…
1 yk

id val
1 y1

1 y2

…
2 yk

…Unsatisfying
ScalabilityExponential ways to

partition the table

Symbolic Reasoning

Solver

(1) Target queries

(2) Search space

(3) Property

Tout1 ≠ Tout2

q1, q2

tables with at
most k rows

Grouping
& aggregation

Computationally
expensive

Tout1 ⊂ Tout2 & Tout2 ⊂ Tout1

“ Select f(val)
 From T

 Group By id ”

!18

“Check whether q1, q2 are equivalent on ALL inputs within size k”

“Small Model”
A smaller search space

to achieve same
reasoning guarantee

Exponential ways to
partition the table

Space Refinement

“Small Model”
(1) If exists T ∈ S satisfying the property, we can find one in the S’ too.

(2) If none of tables in S’ satisfying the property, then no T exists in S too.

q1, q2
(queries)

Tout1 ≠ Tout2
(property)

S (search space)

tables with at
most k rows

!19

“Check whether q1, q2 are equivalent on ALL inputs within size k”

S’ (refined search space)

tables with at
most k rows

Space Refinement

“Small Model”
(1) If exists T ∈ S satisfying the property, we can find one in the S’ too.

(2) If none of tables in S’ satisfying the property, then no T exists in S too.

q1, q2
(queries)

Tout1 ≠ Tout2
(property)

S (search space)

tables with at
most k rows

provenance analysis

!20

“Check whether q1, q2 are equivalent on ALL inputs within size k”

S’ (refined search space)

tables with at
most k rows

Insight from Property

“Check whether q1, q2 are equivalent”

• Many properties requires only one tuple in the output to invalidate.

q1(T) ≠ q2(T)

Exists a row r with different
multiplicities in Tout1 and Tout2

q1 q2

T from search space S

r

r ∈ Tout1, r∉Tout2 → q1(T) ≠ q2(T)

!21

Insight from the Property
• Many important properties requires only one tuple in the output to be invalidated.

q1 q2

T from search space S

r

r ∈ Tout1, r∉Tout2

q1 q2

T’

r

r ∈ Tout1, r∉Tout2

T’ can also distinguish q1 from q2!
!22

Provenance Analysis

!23

id val

?

id val

…

id val
a b

…

q2

q1q1: Select id, max(val)
 From T

 Group By id

q2: Select id, min(val)
 From T

 Group By id

Assume r=(a, b) is the output tuple showing the difference between two queries
r ∈ Tout1, r∉Tout2

Provenance Analysis

!24

id val

???

…

id val

…

id val
a b

…

q2

q1q1: Select id, max(val)
 From T

 Group By id

q2: Select id, min(val)
 From T

 Group By id

Assume r=(a, b) is the output tuple showing the difference between two queries
r ∈ Tout1, r∉Tout2

Provenance Analysis

!25

id val

???

…

id val

…

id val
a b

…

q2

q1q1: Select id, max(val)
 From T

 Group By id

q2: Select id, min(val)
 From T

 Group By id

id val
a ?

a ?

id val
a c

id val
a b

q2

q1

T’={r ∈ T| r.id = a}

Assume r=(a, b) is the output tuple showing the difference between two queries
r ∈ Tout1, r∉Tout2

Provenance Analysis

!26

id val

???

…

id val

…

id val
a b

…

q2

q1q1: Select id, max(val)
 From T

 Group By id

q2: Select id, min(val)
 From T

 Group By id

id val
a ?

a ?

id val
a c

id val
a b

q2

q1

S
tables with at
most k rows

T’={r ∈ T| r.id = a}

S’ = {T ∈ S | T contain only one group}
(the group with id “a”)

tables with at
most k rows

refine

Assume r=(a, b) is the output tuple showing the difference between two queries
r ∈ Tout1, r∉Tout2

Space Refinement

!27

id val
0 1
0 2
1 3
1 3

id val
0 2
1 3

id val
0 1
1 3

q2

q1q1: Select id, max(val)
 From T

 Group By id

q2: Select id, min(val)
 From T

 Group By id

id val
0 1

0 2

id val
0 2

id val
0 1

q2

q1

tables with at
most k rows S’ = {T ∈ S | T contain only one group}

Space Refinement

!28

id val
0 1
0 2
1 3
1 3

id val
0 2
1 3

id val
0 1
1 3

q2

q1q1: Select id, max(val)
 From T

 Group By id

q2: Select id, min(val)
 From T

 Group By id

id val
0 1

0 2

id val
0 2

id val
0 1

q2

q1

tables with at
most k rows S’ = {T ∈ S | T contain only one group}

Symbolic Provenance Analysis

!29

• Inductively define the analysis rules for
different operators

• How to combine provenance from
multiple queries

S → S’

If exists T ∈ S satisfying the property, we
can find one in the S’ too.

Analysis complexity: linear to the query size.

Experiment

!30

Bounded Verification
“Verify two queries are equivalent on ALL inputs.”

q1(T) ≣ q2(T)

Benchmarks: 46 rules from Apache Calcite

Test generation

“Can the query return empty output?”

q(T) = empty

“Find a distinguishing input between queries.”

q1(T) ≠ q2(T)

Benchmarks: 15 student submissions & prior work

Experiment

!31

Bounded Verification
“Verify two queries are equivalent on ALL inputs.”

q1(T) ≣ q2(T)

Benchmarks: 46 rules from Apache Calcite

Test generation

“Can the query return empty output?”

q(T) = empty

“Find a distinguishing input between queries.”

q1(T) ≠ q2(T)

Benchmarks: 15 student submissions & prior work

Process

Measure solving speed with and without
space refinement

1. Increase search space size until hitting
10 minutes limit without refinement

2. Re-run the same search space with
space refinement

Experiment

!32

Bounded Verification
“Verify two queries are equivalent on ALL inputs.”

q1(T) ≣ q2(T)

Benchmarks: 46 rules from Apache Calcite

Test generation

“Can the query return empty output?”

q(T) = empty

“Find a distinguishing input between queries.”

q1(T) ≠ q2(T)

Benchmarks: 15 student submissions & prior work

Process

Measure solving speed with and without
space refinement

1. Increase search space size until hitting
10 minutes limit without refinement

2. Re-run the same search space with
space refinement

Cosette SQL Solver
Qex SQL Solver

Experiment — Verification

!33

Bounded Verification
“Verify that two queries are equivalent on ALL inputs with no more than k tuples.”

Result

Cosette with and without refinement Qex with and without refinement

Experiment — Verification

!34

Bounded Verification
“Verify that two queries are equivalent on ALL inputs with no more than k tuples.”

Result

Cosette with and without refinement Qex with and without refinement

• Up to 400x speed up & little
overhead.

• Speedup is independent
from solver implementation!

Experiment — Verification

!35

Bounded Verification
“Verify that two queries are equivalent on ALL inputs with no more than k tuples.”

Result

Benefit from exponential
reduction of the number

of groups

Provenance is not
able to refine
search space

Experiment - Test Generation

!36

Test generation
“Can the query return empty output on SOME input?”

“Find a distinguishing input between queries.”

Result

cosette with and without refinement qex with and without refinement

Experiment - Test Generation

!37

Test generation
“Can the query return empty output on SOME input?”

“Find a distinguishing input between queries.”

Result

Distinguishing input size is
small enough, benefit is

marginal

Reduction of the
number of groups

Limitations

!38

• Property supported are those can be invalidate by one tuple in the output.

q1(T) ≠ q2(T)

q1(T) ≠ empty

exists r, ϕ(q(T))

“q1(T) contains exactly 5 tuples”

“every tuple in q(T) has same multiplicity”
Generalize to

arbitrary property

• Improving provenance analysis precision.

Summary
Scaling Up Symbolic Reasoning for Relational Queries

(1) Symbolic Reasoning (2) Scaling Up

q
(query)

ϕ
(property)

(search space)

tables
with at most

k rows

provenance
analysis

(3) Result

(1) smaller search space
 & easier to traverse

(2) equivalent for reasoning

Low analysis overhead

& over 100x speed up in
(1) bounded verification
(2) test generation

!39

tables
with at most

k rows

tables
with at most

k rows

(refined search space)

q1, q2

(queries)
assert q1≠q2

(property)

unsatisfiable
(proved q1=q2)

found T,
q1(T)≠q2(T)

(search space)

tables
with at most

k rows

Hidden Slides!

!40

!41

Symbolic Provenance Analysis
Multiple provenance exists for tout for a query q

(strong)(weak)

Select id, min(val)
From T

Where val > 0
Group By id

id val
a -1
a 1
a 3
c 1

…

id val
a -1
a 1
a 3
b 1

…

id val
a -1
a 1
a 3
b 1

…

id val
a 1

…

id val
a -1
a 1
a 3
b 1

…

id val
a -1
a 1
a 3
c 1

…

Choice of abstraction trades between
the analysis overhead and pruning power

