Scaling Up Symbolic Reasoning for
Relational Queries

o, speeding up debugqging & verification of database queries

Chenglong Wang, Alvin Cheung, Ras Bodik
University of Washington

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Relational Queries

 The language between human and relational databases (tables)

Select
(filter & projection)

Select val
From T
Where color = red;

Relational Queries

 The language between human and relational databases (tables)

Select |
(filter & projection) Join

I
I
I
Select val
FromT

Where color = red; T Join T2 On Ty.color=T.color;

3

Relational Queries

 The language between human and relational databases (tables)

Select Join Group
(filter & projection) & Aggregation
- 1 .
I I
I
I
Select val Select color, Sum(val)
FromT FromT

Where color = red; Ty Join T7 On T .color=T.color; Group by color;

4

“The Count Bug”

On Optimizing an SQL-like Nested Query

WON KIM
IBM Research

SQL is a high-level nonprocedural data language which has received wide recognition in relational
databases. One of the most interesting features of SQL is the nesting of query blocks to an arbitrary
depth. An SQL-like query nested to an arbitrary depth is shown to be composed of five basic types of
nesting. Four of them have not been well understood and more work needs to be done to improve
their execution efficiency. Algorithms are developed that transform queries involving these basic
types of nesting into semantically equivalent queries that are amenable to efficient processing by
existing query-processing subsystems. These algorithms are then combined into a coherent strategy
for processing a general nested query of arbitrary complexity.

1982 “On Optimizing an
SQL-like Nested Query” (Kim Won)

Rewrite rules for nested queries

From S

q | q 2 S = (Select S.cn, Agg(S.cm)
FROM S

Select R.ck Group By S.cn):

s s s s s s -

From R

Where R.ch = (Select Agg(S.cm) » Select R.ck
From R

Where S.ch = S5.¢p); Where R.ch = (Select Agg(S’.cm)
From §’

Where T'.c, = R.cp);

i

A s N BN W BN B W W

“The Count Bug”

Rewrite rules for nested queries

On Optimizing an SQL-like Nested Query

WON KIM
IBM Research

q | q 2 S = (Select S.cn, Agg(S.cm)
FROM S

Select R.ck Group By S.cn):

SQL is a high-level nonprocedural data language which has received wide recognition in relational PA F R
databases. One of the most interesting features of SQL is the nesting of query blocks to an arbitrary - r Om
depth. An SQL-like query nested to an arbitrary depth is shown to be composed of five basic types of .
nesting. Four of them have not been well understood and more work needs to be done to improve ‘s Wh R — S I A S S I R
their egxecution efficiency. Algorithms are developed that transform queries involving these I:msic Se ~ er e ‘Ch (e eCt gg ‘Cm e eCt 'Ck
types of nesting into semantically equivalent queries that are amenable to efficient processing by ~

existing query-processing subsystems. These algorithms are then combined into a coherent strategy o F ro m S F ro m R

for processing a general nested query of arbitrary complexity. ~
Categories and Subject Descriptors: H.2.4 [Information Systems]: Systems—query processing Wh e r e S . Cn —_ S . CP); Wh e r e R. Ch — (S e I e Ct A g g (S). Cm)
)
From S

1982 “On Optimizing an Where T'c, = R
SQL-like Nested Query” (Kim Won) oo meemeemeemeemeememeemeemeemeeesemeemeemeemseeeeeeemeemeeeeimeiceicesceiseiceecesceaes _

1
1
1
1
1
1
1
1
1
1
1
1
1
L4

i

LBL-22396

Optimization of Nested SQL Queries Revisited

Richard A. Ganskd
Department of Computer Science
San Francisco State University

:
:

Harry K.T. Wong
Lawrence Berkeley Laboratory

-
~ University of California . . . I 0
Berkeley, California .’ PARTS: SUPPLY:

" M QQH ENUM QUAN SHIPDATE
’] 8
<7 3 6 3 4 7-3-79
SELECT SNAME - ~ :

i -l g 10 ! 3 10-1-78
. Current methods of evaluating nesied querics in the SQL language can be WHERE SNOIN (SELECT SNO ~a .

T s s gt s o e ke o 8 0 10 6-8-78

I ized., il i ificati for nested ~

jon costs is ga
:m:. s primgir m“wm be e“‘:" frpe D(ql:’ﬁyc:";ybg::lli This is an example of a query with a single level of nestng.
description of a majoc bug in onc of these . Further examinati The basic stucture of a SQL query is a query block. which
ey ey A P rancicte nrincinally af 2 SFT ECT flaues 2 FROM Alanes and

2
1
10 2 8-10-81
5 5-7-83
{KIE 84:2)

1987 “Optimization of Nested SQL
Queries Revisited” (Ganski & Wong)

;
:

A s N BN W BN B W W

N m m m E m M E M M O M M M B M BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN B M M M M W m om omom P

Reasoning Tasks

Verification

b
) —
d, q ' “Are two queries equivalent on ALL inputs” ' q q

Property Checking (for optimization)
q ' “Can the query return empty output on SOME input?”

=) q(T) = empty

, Mutation testing / Grading
%9 ' “FInd a distinguishing input between queries.”

=» q(T) + q'(T)

Relational Queries

tens to hundreds of HUGE tables

complex analytical functions

generated by computer

highly optimized
l plays important roles in industry

can’t afford 5 years to find a bug!

“analyze
transition
history”

Automatic Reasoning

Check whether q1 is equivalent to g2 (on ALL inputs)

q1,qz assert qi+qz qi,qz assert qi1#q:z
(Queries) (oroperty) (Queries) (oroperty)
M N N " 4
[~ 4 N " 4 N
unsatisfiable found T, unsatisfiable found T,

(proved qi=q2) qi(T)#qz(T) (proved q1=q2) qi(T)#q2(T)

Automatic Reasoning (unbounded

equivalence

Check whether q1 is equivalent to g2 (on ALL inputs) / Is unaeciaable

qi,q2 assert qi«qz qi, q2 assert qi1#q:z
(Queries) (oroperty) (Queries) (oroperty)

¥ M N Y

—)

" 4 | ¥ ™

unsatisfiable found T, unsatisfiable found T,
(proved qi=q2) qi(T)#q2(T) (proved qi1=q2) qi(T)#q2(T)

10

Symbolic Reasoning

Check whether q1 is equivalent to g2 (on ALL inputs within a search space)

tables
with at most
q1, q2 assert qi+qz di, gz k rows assert q;#q:
(Queries) (oroperty) (Queries) (search space) (oroperty)
M M N 3 [~ 4
" 4 N " 4 N
unsatisfiable found T, unsatisfiable found T,

(proved qi=q2) qi(T)#q2(T) (proved qi1=q>) qi(T)#q2(T)

11

Symbolic Reasoning

“Check whether g1, g2 are equivalent on ALL tables with at most k tuples”

(1) Target queries

qi: Select id,val ~ q2: Select id, val
FromT FromT
Where id > | Where id # |

=

(2) Search space

tables with at
most k rows

Solver

(3) Property
qi(T) # q2(T)

12

Symbolic Reasoning

“Check whether g1, g2 are equivalent on ALL tables with at most k tuples”

(1) Target queries

q:: Select id, val
From T

Where id > |

(2) Search space

tables with at
most k rows

(3) Property
qi(T) # q2(T)

q2: Select id, val
From T

Where id # |

=

13

Solver

id val
0 |
] 2
" 4 N
g q2
id val id val
(empty) 0 |

Symbolic Reasoning

“Check whether g1, g2 are equivalent on ALL inputs within size k”

| Grouping
(1) Target queries & aggregation
di, gz » “ Select f(val)
From T
(2) Search space Group By id ”

tables with at

most k rows

Solver

(3) Property
Toutl + ToutZ

14

Symbolic Reasoning

“Check whether g1, g2 are equivalent on ALL inputs within size k”

id val
. Grouping Iy
(1) Target queries & aggregation Iy
di, gz X “ Select f(val) I '
FromT A
(2) Search space Group By id ”

y I id val

I vd
tables with at ’ Exponential ways to Xy Ly
most k rows partition the table ooy ||
Solver —= —*
(3) Property "Id val
yi
Toutl + ToutZ 2 /2
k Yk

15

Symbolic Reasoning

“Check whether g1, g2 are equivalent on ALL inputs within size k”

id val
| Grouping 7
(1) Target queries & aggregation Iy
di, g2 R “ Select f(val) I
FromT r
(2) Search space Group By id ”

y I id val

I vd
tables with at ’ Exponential ways to Xy Ly
most k rows partition the table xx vy |— L
Solver — —
(3) Property —
Computationally ,
Tout! F Tout2 . expensive &
Toutl C ToutZ & ToutZ C Toutl k 7

10

Solver

Symbolic Reasoning

“Check whether g1, g2 are equivalent on ALL inputs within size k”

(1) Target queries

di, q2
(2) Search space

tables with at
most k rows

(3) Property
Toutl + ToutZ

17

Grouping
& aggregation

“ Select f(val)
From T
Group By id ”

Exponential ways to
partition the table

Computationally
expensive
Toutl C ToutZ & ToutZ C Toutl

id val

| yi

| y2

I .
Unsatisfying

Scalability
o oy |—| ' 7
2 Yk
Xk Yk

\ id val

| yi

2 y2

k Yk

Symbolic Reasoning

“Check whether g1, g2 are equivalent on ALL inputs within size k”

. Grouping
(1) Target queries & aggregation
“ Select f{val) “Small Model”
1> 42 > From T A smaller search space
(2) Search space Group By id ” to achieve same

reasoning guarantee

SN N

tables with at Exponential ways to
most k rows partition the table

(3) Property

Solver

Computationally

. expensive
Toutl C ToutZ & ToutZ C Toutl

Toutl + ToutZ

18

Space Refinement

“Check whether g1, g2 are equivalent on ALL inputs within size k”

di,qz2 Touti F Tout2
(Queries) (oroperty)

—

tables with at

most kK rows

S (search space)

“Small Model”
(1) If exists T € S satisfying the property, we can find one in the S’ too.

(2) If none of tables in S’ satisfying the property, then no T exists in S too.

19

Space Refinement

“Check whether g1, g2 are equivalent on ALL inputs within size k”

di,qz Tout1 F Tout2

(Queries) (oroperty)
provenance analysis

tables with at

most kK rows

S (search space)

“Small Model”
(1) If exists T € S satisfying the property, we can find one in the S’ too.

(2) If none of tables in S’ satisfying the property, then no T exists in S too.

20

Insight from Property

 Many properties requires only one tuple in the output to invalidate.

T from search space S

“Check whether q1, q2 are equivalent”

I
I
qi(T) # q2(T) —
I
‘ g o “ 9
I I
XIS?S a I'OW I‘ wit Hrerer (N I
multiplicities in Tou:r @nd Toue E—

I € Toutl, rQToutZ — ql(T) + CIZ(T)

21

Insight from the Property

 Many important properties requires only one tuple in the output to be invalidated.

T from search space S
TJ

d1

do

r [

r € Toutl, ré lout

r € Toutl, ré lout2 ..]
T’ can also distinguish q1 from q2!

22

Provenance Analysis

Assume Is the output tuple showing the difference between two queries

id val
qi: Select id, max(val)
From T id val
Group By id
?
q2: Select id, min(val) | N _
FromT g2 id VZ’
da

Group By id

23

Provenance Analysis

Assume Is the output tuple showing the difference between two queries

id val
qi: Select id, max(val)
From T id val
Group By id 299
q2: Select id, min(val) N _
FromT g2 id VZI
da

Group By id

24

qi: Select id, max(val)
From T
Group By id

q2: Select id, min(val)
From T
Group By id

Provenance Analysis

Assume r=(a, b) Is the output tuple showing the difference between two queries

id

777

val

r € Toutl, rgToutZ

id

val

id

val

25

id
a

a

val
?

?

I’'={r €T| rid = a}

id

val

id

val

Assume

qi: Select id, max(val)
From T
Group By id

q2: Select id, min(val)
From T
Group By id

Provenance Analysis

Is the output tuple showing the difference between two queries

id

7727

val

tables with at
most k rows

id

val

id

val

20

\
.

id

val

I’'={r €T| rid = a}

v,

id val
a C
id val
a b

qi: Select id, max(val)

FromT

Group By id

q2: Select id, min(val)

FromT

Group By id

Space Refinement

val

wWw W N —

id val
0 2
| 3
id val

id

val

27

id

val

id

val

qi: Select id, max(val)
From T
Group By id

q2: Select id, min(val)
From T
Group By id

Space Refinement

28

id

val

id

val

Symbolic Provenance Analysis

(g~ @)~ (q1~ 1) A ...

q=T q = Select(qy, f) schema(q;) =¢
Tabl Select
@D~ T~ T g e ti]f)
q = Distinct(q,) (Distinct) q = Proj(0,q;) schema(q;) =¢

(@~ @)~ (q1 ~ ¢) (g~ @)~ (ql ~ [t.ir—> ([Cth-j]Ui)lfﬁ)

g =Join(q1,q2) ¢ =1 Ao A3 |schema(qy)| = ny
colRef(¢;) N schema(q;) = 0 (j=1,2)

(g~ @)~ (q1 ~ ¢1) AN(qz2 ~ [t.i t.(i —ny)]e2)
g = Union(q1,q2)

(Join)

q = Rename(q;, name, ¢)

(g~ @)~ (q1 ~¢) A (g2 ~) (g ~ @) ~ (g1~ $1)
q = LeftJoin(q1,q2, f) ¢ = ¢1 A2 A3 colRef(¢p;) Nschema(q;) = 0 (i=1.2)

(Union)

(Rename)

(g~ @)~ (q1 ~ ¢1) A (g2 ~ true) (LeftJoin)

q = Aggr(c, a, ¢, q1) (i ~ ¢i) ~ Nk (qi-k ~ ¢{k)

(Step)

¢ =¢1 AP, colRef(¢y) C {c}
(Agex) Ni(qi ~ Pi) ~ Nik (q;k ~ ¢;k)

(g~ @) ~ (q1 ~ 1)

29

4)

e |nductively define the analysis rules for
different operators

e How to combine provenance from
multiple queries

S-S’

If exists T € S satisfying the property, we
can find one in the S’ too.

Analysis complexity: linear to the query size.

Experiment

Bounded Verification

“Verify two queries are equivalent on ALL inputs.”

q1(T) = q=(T)

Benchmarks: 46 rules from Apache Calcite

| -

Test generation

“Can the query return empty output?”

q(T) = empty

“Find a distinguishing input between queries.”
q1(T) # qz(T)

Benchmarks: 15 student submissions & prior work

30

Experiment

Bounded Verification

“Verify two queries are equivalent on ALL inputs.”

q1(T) = q2(T)

Benchmarks: 46 rules from Apache Calcite

| -

Test generation
“Can the query return empty output?”

q(T) = empty

“Find a distinguishing input between queries.”

q1(T) # q2(T)

Benchmarks: 15 student submissions & prior work

31

Process

Measure solving speed with and without
space refinement

1.

Increase search space size until hitting
10 minutes limit without refinement

Re-run the same search space with
space refinement

Bounded Verification

“Verify two queries are equivalent on ALL inputs.”

q2(T)

Benchmarks: 46 rules from Apache Calcite 1

q1(7)

| -

Test generation

Experiment

Process ,

“Can the query return empty output?”

q(T) = empty

“Find a distinguishing input between queries.”

q1(T) # q2(T)

Benchmarks: 15 student submissions & prior work

32

Measuré solvmg s,oee c
space refiner -

ith and without

Increase search Space size until hitting
10 minutes limit without refinement

Re-run the same searé

h space with
space refinement

Cosette QL Solver
Qex SQL Solver

speedup

Experiment — Verification

Bounded Verification

“Verify that two queries are equivalent on ALL inputs with no more than k tuples.”

Result

1,000

200

refinement
B with
without

100

20

10

1 .
0.2 0.2
0.1 0.1
case_id

II
NN

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
case_id

Cosette with and without refinement

Qex with and without refinement

33

refinement
B with
without

speedup

Experiment — Verification

Bounded Verification

“Verify that two queries are equivalent on ALL inputs with no more than k tuples.”

Result * Up to 400x speed up & little '\"

overhead.

i ® Speedup is independent |
t from solver implementation! .}

II
NN

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
case_id

without .

0.1

case_id

Cosette with and without refinement

Qex with and without refinement

34

refinement
B with
without

Experiment — Verification

Bounded Verification

“Verify that two queries are equivalent on ALL inputs with no more than k tuples.”

seLefr 1)
ReSUIt FROM'i‘;\ELE'* FROM emp
MeERT emp.deptno > 7) AS t
INNER JOIN emp AS EMPO
ON t.deptno = EMP@.deptno

i i R INNER JOIN emp AS EMPI
| Benefit from exponential § ON EMP@.deptno = EMP1.deptno;
§ reduction of the number — Ssa?™ refinement
o~ ’ B with
without

of groups

i Provenance is not
able to refine
search space

speedup

Select t2.name, t2.deptno, Count (%)
From (Select name, deptno

B
/
N\
0
‘ ||

35

Experiment - Test Generation

Test generation

“Can the query return empty output on SOME input?”

“Find a distinguishing input between queries.”

Result . | 30
refinement ' refinement
= with = with
5 without 2.5 without
4 2.0 I
Q. Q.
- -
® 3 ® 15 I
o Q
Q. Q.
» » I
2 1.0 -
’ | [0.5-
O | r 1T 17T 17 1T 1T 1T 1T 1 | I 1 1 OO | | | | | | | I | | | l | | |
OrNOITWONODDPDO - N®Y OCrNMOITLOMOVHIO -ANOY
case_id case_id
cosette with and without refinement gex with and without refinement

36

Experiment - Test Generation

Test generation

“Can the query return empty output on SOME input?”

J

“FInd a distinguishing input between queries.’

Result

i Reduction of the _ refinement
: W with
number of groups ¢ ithout

SELECT Distinct dept_name
FROM course
WHERE credits =
(SELECT MAX(credits)
FROM coursg.NATURAL JOIN department

| Distinguishing input size is}
i small enough, benefitis
marginal

speedup

HAVING CB

\ww,d&STINCT course 1d) >4)

case id

Limitations

* Property supported are those can be invalidate by one tuple in the output.

qi(T) # q2(T)
qi(T) + empty

exists r, (q(T))

Y T n .n l / J))
qi(T) contains exactly 5 tuples Generalize to

“every tuple in q(T) has same multiplicx arvitrary property

* |mproving provenance analysis precision.

33

Summary

Scaling Up Symbolic Reasoning for Relational Queries

(1) Symbolic Reasoning (2) Scaling Up (3) Result

tables

with at most § § ables

k rows E ‘: most

tai+a | tables OWS

ql: qz Search Space asser ql qz with at most ¢
(Queries) (property) (Ui) k rows oroperty) (1) smaller search space
‘ l K query, (Search Space) property, & easier to traverse
' (2) equivalent for reasoning

provenance
analysis
Low analysis overhead

abl
terflost & over 100x speed up Iin

rows

, . (1) bounded verification
unsatisfiable found T, (refined search space) (2) test generation
(proved q1=q2) qi(T)#qz(T) ' '

39

Hidden Slides!

Symbolic Provenance Analysis

Multiple provenance exists for t..: for a query g

id val id val id val id val id val
id val
a -1 a -1 a | a | a |
a | a | a | a | a |
a 3 a 3 a 3 a 3 a 3
Select id, min(val) C l C | b | b | b |
FromT

Where val > 0 ﬁ

Group By id (weak) (strong)

Choice of abstraction trades between
the analysis overhead and pruning power

41

