
157

Speeding up Symbolic Reasoning for RelationalQueries

CHENGLONG WANG, University of Washington, USA

ALVIN CHEUNG, University of Washington, USA

RASTISLAV BODIK, University of Washington, USA

The ability to reason about relational queries plays an important role across many types of database appli-

cations, such as test data generation, query equivalence checking, and computer-assisted query authoring.

Unfortunately, symbolic reasoning about relational queries can be challenging because relational tables are

multisets (bags) of tuples, and the underlying languages, such as SQL, can introduce complex computation

among tuples.

We propose a space refinement algorithm that soundly reduces the space of tables such applications need to

consider. The refinement procedure, independent of the specific dataset application, uses the abstract semantics

of the query language to exploit the provenance of tuples in the query output to prune the search space. We

implemented the refinement algorithm and evaluated it on SQL using three reasoning tasks: bounded query

equivalence checking, test generation for applications that manipulate relational data, and concolic testing of

database applications. Using real world benchmarks, we show that our refinement algorithm significantly

speeds up (up to 100×) the SQL solver when reasoning about a large class of challenging SQL queries, such as

those with aggregations.

CCS Concepts: • Theory of computation → Logic and verification; Database query languages (prin-
ciples);

Additional Key Words and Phrases: Symbolic Reasoning, Verification, Relational Query

ACM Reference Format:
Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2018. Speeding up Symbolic Reasoning for Relational

Queries. Proc. ACM Program. Lang. 2, OOPSLA, Article 157 (November 2018), 25 pages. https://doi.org/10.
1145/3276527

1 INTRODUCTION
The relational model [Codd 1970] is one of the most popular ways to represent data. Under the

relational model, data is organized into tables. Each table consists of a bag of tuples that contains

multiple attributes and their corresponding values, with all tuples in the same table sharing the

same number of attributes. The simplicity of the relational model has led to its widespread adoption

among database systems, with numerous commercial and open-source implementations available.

The popularity of the relational model has also led to the development of various development

tools and applications that utilize relational databases. Many such applications require reasoning

about tables. For instance, one way to determine whether two relational queries, q1 and q2, are
semantically equivalent is to check if there exists a tableT such that the two queries return different

results when evaluated on T . Furthermore, database testing tools require the generation of test

Authors’ addresses: Chenglong Wang, University of Washington, USA, clwang@cs.washington.edu; Alvin Cheung, Uni-

versity of Washington, USA, akcheung@cs.washington.edu; Rastislav Bodik, University of Washington, USA, bodik@cs.
washington.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART157

https://doi.org/10.1145/3276527

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

https://doi.org/10.1145/3276527
https://doi.org/10.1145/3276527
https://doi.org/10.1145/3276527

157:2 Chenglong Wang, Alvin Cheung, and Rastislav Bodik

inputs from the provided query and test conditions to check whether the query can produce an

ill-formed output on some input tables: for example, an application might return an error if a query

in the application can return empty results or results containing NULL values when evaluated on a

non-empty input employee relation, and these errors can be caught if we have corresponding test

inputs.

Obviously, given the large number of possible tables for a database schema, exhaustively enu-

merating and explicitly storing them in program memory for query reasoning is infeasible. Hence,

prior work has focused on reasoning about tables symbolically. For instance, Cosette [Chu et al.

2017b], a query equivalence checker, leverages Satisfiability Modulo Theories (SMT) solvers for

bounded equivalence checking. Given two queries q1 and q2, Cosette encodes the outputs of both
queries symbolically as an SMT formula and sends the formula to an SMT solver to either: (1) prove

that the two formulas are semantically equivalent (and hence the input queries are equivalent), or

(2) show that the two queries are inequivalent by finding an input table as the counterexample (i.e.,

the two queries will return different results when evaluated on it). Similar techniques have been

employed in testing frameworks as well [Cheung et al. 2011; Tanno et al. 2015; Veanes et al. 2010]:

these frameworks aim to generate test inputs from the given query and test conditions. These test

conditions can be path conditions from a database application or unit test assertions for output

properties that we are interested in.

While representing tables symbolically indeed allows such tools to reason about different data-

base applications that arise in practice, we believe a substantial opportunity remains for further

improvement. To our knowledge, none of such relational query reasoning tools leverage the prop-

erties of tables or the domain-specific aspects of relational query languages. An example property

is the independence between groups in a query with Group By: in these queries, tuples are parti-

tioned into different groups according to the value of the grouping keys, and different groups are

reduced into single tuples independent of each other. As a result, without exploiting such properties,

many existing tools explore an unnecessarily large number of tables during execution. As we will

show, this significantly hampers such tools’ ability to analyze more complex real-world database

applications.

In this paper, we describe a way to systematically identify and exploit properties of tables and
the SQL query language for relational query reasoning.

1
Specifically, we focus on scaling up SQL

reasoning tasks aimed at finding input tables TI for a given query q (or multiple queries) such

that the output table TO satisfies a property expressible using a subset of first-order logic with

a single existential quantifier: ∃tO ∈ T .ψ (tO ,TO) (i.e., there exists a tuple tO in the output table

TO satisfying the propertyψ). As we will discuss in section 2, while this subset does not include

properties such as “the output table has exact size 5,” it nonetheless allows us to check for properties

such as the following: (1) “the output table contains a tuple with multiplicity greater than zero”

(under bag semantics, multiplicity of a tuple if the number of times it appears in the table), which

arise in many situations in the unit test generation task for database applications [Veanes et al.

2010]; (2) “the output table does not contain any attribute with value equals to NULL,” which is

useful for query optimization; and (3) “queries q1 and q2 outputs contain the same tuple t but with
different multiplicities,” meaning that the two queries are semantically different [Chandra et al.

2015].

To determine the validity of such properties, our key idea is to backwardly compute the provenance
of tuples, i.e., the lineage of how a given tuple is derived from the input tables, using the abstract

1
While we focus on SQL in this paper given its popularity, we believe the techniques described in this paper can be applicable

to other relational query languages as well.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

Speeding up Symbolic Reasoning for Relational Queries 157:3

semantics of SQL to refine the space of input tables that symbolic reasoning tools need to consider.

We next present two motivating examples to demonstrate our insights.

Motivating Example 1. We first show a simple example in the context of unit test genera-

tion [Veanes et al. 2010]. In this task, given the following query q parameterized with @x, we
aim to either find an input table Bonus such that the output of q is non-empty for a given concrete

parameter, or prove that no such input table exists. If such input exists for the given parameter, the

input table, the parameter, and the query can be combined as a unit test for the database.

Select job , sal

From Bonus

Where sal <= @x

And sal > 2;

Bonus1
job sal
2 11

Bonus2
job sal
3 5

3 5

Bonus3
job sal
2 11

3 5

3 5

Fig. 1. Given the query q, whether q would produce a non-empty output when applied to Bonus3 is subsumed
by whether q produces non-empty outputs when evaluated on Bonus1 and Bonus2.

Figure 1 shows a concrete example. The query q (parameterized with @x) filters tuples in table

Bonus using the condition sal > 2∧ sal < @x. Assuming that the number of tuples considered by

the query solver is bounded to k , the solver would encode the search space consisting of all tables

with at most k tuples as a symbolic table and search for desirable assignments for all 2k attributes

in the table, say by invoking an SMT solver.

However, we actually do not need to consider the full space of all tables with at most k tuples to

search for the desirable table. Instead, given that the query q contains only one filter operation,

we only need to consider the space of all tables with exactly one tuple (note that the tuple may

appear multiple times in the table due to bag semantics). This is true because the query q does not

introduce interactions among different tuples during computation, i.e., whether a tuple t in the

input table would be included in the output does not depend on whether another tuple t ′ would
be included or not. In other words, the provenance of an output tuple (a tuple in the output table)

with job=j1 and sal=s1 is exactly those tuples in the input table with job and sal equal j1 and s1
respectively, but not any other tuples.

To leverage the provenance of tuples, observe that if we have already examined in the table

search space that neither Bonus1 nor Bonus2 in Figure 1 is an input table that satisfies the test

condition for the given @x (e.g., when @x = 4), we don’t need to check Bonus3. Meanwhile, if query

q returns a non-empty output when applied to Bonus3, then at least one of Bonus1 or Bonus2 would
be a desirable input when searching in the space of all tables containing only one unique tuple. For

example, if @x = 10, Bonus1 is a valid unit test input, then smaller input tables such as Bonus2 and
Bonus3 are valid test inputs as well.

Given this insight, we need to consider only tables containing k tuples where all tuples share the

same job and sal values. The SQL solver only needs to find one concrete value for each field, rather

than 2k different values for both fields in the table. As we will show in section 6, this reduction

dramatically accelerates the test generation process, especially when the bound k is large.

Motivating Example 2. For bounded verification [Chu et al. 2017a] or query disambiguation [Chan-

dra et al. 2015], the goal is either to prove the equivalence of two queries,q1 andq2, within a bounded
space (i.e., q1 and q2 always return the same output when applied to the same set of input tables in

the space), or to construct input tables that distinguish q1 from q2 (i.e., q1 and q2 return different

results when evaluated on the same constructed distinguishing input tables).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

157:4 Chenglong Wang, Alvin Cheung, and Rastislav Bodik

Figure 2 shows two semantically equivalent queries,q1 andq3, and queryq2, which is inequivalent
to them. Query q1 first filters the input table Bonus by sal > 5, then groups the result by job and

dept to calculate the maximum sal for each group, and finally keeps only the groups with job
values less than 10. Query q3 differs from q1 only in its order of evaluating the filter predicate job
< 10 and grouping. Since the predicate refers to only columns appeared in the Group-By clause

(i.e., job), q1 and q3 are equivalent. Query q2 is semantically different from them since it groups

tuples only by job, not by both job and dept.

-- q1

Select job , dept ,

Sum(sal)

From Bonus

Where sal > 5

Group By job , dept

Having job < 10;

-- q2

Select job , Max(dept),

Sum(sal)

From Bonus

Where sal > 5

Group By job

Having job < 10;

-- q3

Select job , dept ,

Sum(sal)

From Bonus

Where sal > 5

And job < 10

Group By job , dept;

Fig. 2. Three queries with the relation q1 ≡ q3 . q2. Query q3 differs from q1 only by evaluating the filter
job < 10 before grouping. Since the predicate job < 10 only refers to columns appeared in the Group By
clause, this transformation is semantics preserving. q2 is semantically different from q1 since it groups tuples
only by job but not both job and dept.

To check the equivalence between queries q1,q3 within the bounded space of all tables with

at most k tuples, the solver first encodes the search space as a symbolic table and queries the

underlying SMT solver to check whether q1 and q3 always produce the same output when applied

to the symbolic input. In this example, the SQL solver faces the challenge to reason about grouping

and aggregation: it needs to consider all 2
k
possibilities of groups in both queries (or 2

k
number of

possibilities to partition the input table according to the grouping keys). Verification time increases

exponentially as the bound increases.

Fortunately, we can also refine the search space in a way similar to that in the first case, after

realizing that both queries do not introduce interplay among different (job, dept) groups during
evaluation: different groups are aggregated independent of each other. In other words, each output

tuple depends only on tuples in the input table belonging to the same (job, dept) group: the
provenance of tuple (job

1
, dept

1
, sumSal1) are tuples in the input table satisfying job = job

1
and

dept = dept
1
).

Thus, we can restrict the search space to just tables with one (job, dept) group and restrict all

tuples to satisfy job < 10 and sal > 5 (since no other tuples would pass through the filter to the

output). The key insight behind this refinement process is this: assuming there exists an input table

Bonus1 such that q1 and q3 return different outputs Tout1 and Tout2 when applied to it, then there

must be a tuple t whose multiplicity in Tout1 differs from its multiplicity in Tout2. Then, we can also

construct another input table Bonus2, one that contains only tuples in Bonus1 whose job and dept
are the same as those in the tuple t , to reproduce the difference between q1 and q3. Apparently,
since Bonus2 contains just one (job, dept) group, it is included in the refined search space. On the

other hand, if we prove that the two queries are equivalent in the refined search space, we also

prove their equivalence in the original search space.

Similarly, to find a distinguishing input that distinguishes q2 from q1 in Figure 3, we can refine

the search space in a similar fashion. Note that while q2 could introduce interplay among tuples

belonging to different (job, dept) groups since it groups only by job key (unlike q1 and q3), q2
will not introduce interplay among tuples belonging to different job groups during evaluation

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

Speeding up Symbolic Reasoning for Relational Queries 157:5

(i.e., tuples in the input table belonging to different job groups won’t be aggregated to the same

tuple in the output). Thus, although we cannot restrict the new search space to tables with only

one (job, dept) group, we can restrict it to tables consisting of tuples within one job group that

satisfy job < 10, sal > 5. For example, Bonus1 is a distinguishing input that distinguishes q1
from q2, as they both produce different results for tuples whose job = 2. Meanwhile, the other

table Bonus2 from the refined search space can also reproduce the difference between q1 and q2
based on their difference in multiplicities of tuples in the group with job equals 2. In fact, tuples in

Bonus2 are provenance tuples collected from Bonus1 for the distinguishing output tuple (2, 2, 8),
which explains why Bonus2 can reproduce the difference in multiplicities of (2, 2, 8) in both query

outputs, as does Bonus1.
Since the refined search space no longer contains a table with multiple job groups for the solver

to consider, the solver avoids the exponential encoding of the search space with respect to the job
column, which provides a speedup in solving the problem.

Bonus1
job dept sal
1 4 8

2 1 8

2 1 7

2 2 6
job maxD sumSal
1 4 8

2 2 21

q2

job dept sumSal
1 4 8

2 1 15

2 2 6

q1 Bonus2
job dept sal
2 1 8

2 1 7

2 2 6

job maxD sumSal
2 2 21

q2

job dept sumSal
2 1 15

2 2 6
q1

Fig. 3. The two concrete tables Bonus1, Bonus2 are both distinguishing inputs that show the difference
between q1 and q2 in Figure 2. Different colors in the table indicates different provenance groups in the input
table.

Our approach. As mentioned above, in this paper we introduce a systematic approach for identi-

fying and utilizing provenance information to refine the search space to scale up symbolic SQL

reasoning. The key insight of our search space refinement algorithm is that we can perform a

symbolic provenance analysis of the input queries to identify which tuples in the symbolic table

alone are sufficient to prove or disprove the verification condition. Throughout this analysis, we

construct a predicate ϕ that describes which tuples of an input table T are responsible for data

generation or bounded verification.

We then use the provenance predicate ϕ to refine the original search space S into a new search

space S′ that is equivalent to S in terms of the verification condition: if there exists an input table

T ∈ S satisfying the verification condition for the given queries, then there exists an input table

T ′ ∈ S′ that also satisfies the verification condition.

In particular, our provenance analysis uses only the abstract semantics of SQL to maintain ef-

ficiency, because computing the strongest provenance predicate for given queries requires full

symbolic reasoning of the queries that can be as difficult as solving the reasoning task itself [Bune-

man et al. 2006]. For example, we over-approximate all aggregation functions as uninterpreted

functions, so that the provenance tuples of tuple tO (a tuple in the output table) are all tuples in the

input table belonging to the same group as tO (but in reality, certain aggregation functions like

max depend only on the tuple in the input with the largest value). As we will show in section 5,

such abstraction introduces a sound over-approximation of the query semantics that can be used to

efficiently and soundly prune the search space for symbolic SQL reasoning. In the future, we could

potentially redesign different abstractions to discover better trade-offs between analysis overhead

and pruning effectiveness.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

157:6 Chenglong Wang, Alvin Cheung, and Rastislav Bodik

Furthermore, our space refinement process relies only on the semantics of the input queries

but not the underlying symbolic reasoning tool’s design and implementation, which allows it to

be applied to speed up different symbolic SQL reasoning tools [Chu et al. 2017a; Shah et al. 2011;

Veanes et al. 2010].

We evaluated the space refinement algorithm for three symbolic SQL reasoning scenarios:

bounded verification (as utilized in verifying query rewriting rules), distinguishing input generation

(for query disambiguation), and unit test generation (for testing frameworks). Using 61 real-world

benchmarks, we compare the performance of SQL solvers using the search space with and without

refinement. Results show that our refinement algorithm effectively speeds up the reasoning of a

large class of queries used in real-world applications.

In sum, this paper makes the following contributions:

• We devised a new way to utilize the provenance of tuples to identify tables that are equivalent

to each other with respect to the reasoning process of the given relational queries.

• We designed a space refinement algorithm that utilizes the provenance property to soundly

prune the space of tables that need to be explored.

• We implemented our space refinement algorithm and evaluated it on various tools that apply

symbolic reasoning to reason about relational queries. Results show that our search space

refinement algorithm can effectively improve symbolic reasoning for SQL across different

usage scenarios, and speeds up to 100× SQL solver reasoning for complex queries with

aggregation.

We next review symbolic SQL reasoning (section 2), describe our approach with a query equiv-

alence checking example (section 3), then formally introduce our space refinement algorithm

(section 4, section 5), and finally evaluate our algorithm in the context of SQL equivalence checking

and test generation (section 6).

2 PROBLEM DEFINITION
We start out by briefly reviewing backgrounds in symbolic SQL reasoning and defining the space

refinement problem.

Table and SQL. Table is the first class value in SQL consisting of a schema and a bag of tuples [Negri

et al. 1991].
2
A table schema defines the number of columns and the type of each column. A tuple t

is a list of values with the same size as the schema. In our paper, we use JT Kt to denote computing

the multiplicity of t in table T : if t is in T , it returns the number of times t appears; otherwise,

it returns 0. SQL queries are functions over tables, and we use Jq(T)K to represent evaluating q

against a list of input tables T (the result Jq(T)K is a table Tout).
Under bag semantics, two tables are equal if and only if every tuple in them has the same

multiplicities. Formally, table equality can be defined as T1 = T2 ⇐⇒ ∀t .JT1Kt = JT2Kt . Two
queries q1,q2 are equivalent if and only if evaluating them returns the same results for all possible
input tables that are compatible with the schema. This equivalence relation can be defined as

q1 ≡ q2 ⇐⇒ ∀T . Jq1 (T)K = Jq2 (T)K.

Symbolic SQL Reasoning. In this paper, we focus on SQL reasoning tasks in the form of finding

input tables T in for a given query q (or queries q1,q2) such that the output table Jq(T in)K satisfies
a property in the form of Ψ(Tout) = ∃tO .ψ (tO ,Tout), where the only use of Tout in ψ is to check

multiplicity of tO (i.e., used as JToutKtO). This problem is solved by finding the satisfiability problem

of ∃T in.Ψ(Jq(T in)K) using the formula Ψ above.

2
There are other semantics of SQL, e.g., set semantics, but bag semantics is the most commonly implemented in modern

commercial database systems.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

Speeding up Symbolic Reasoning for Relational Queries 157:7

• This formula restriction prevents us from reasoning about properties like “the output table

Tout has exactly 5 tuples” where Ψ(Tout) = (|Tout | = 5), or “every tuple in Tout has the same

multiplicity” where Ψ(Tout) = ∃m∀tO ∈ Tout.(JToutKtO =m).
• On the other hand, we can still use the formula Ψ to express many practical reasoning tasks.

For unit test generation, the property Ψ(Tout) = ∃tO .JToutKt > 0 (there exists a tuple in the

output table with multiplicity > 0). For equivalence checking, the property Ψ(Tout1,Tout2) =
∃tO .(JTout1KtO , JTout2KtO), i.e., exists a tuple tO has different multiplicities in two query

outputs.

As we will show later, our algorithm exploits the fact the we only need to find one tO that satisfies

the propertyψ to witness the satisfaction of the property Ψ to conduct search space refinement.

Search Space Refinement. In this paper, we define the search space refinement problem as follows.

Given a query q (or queries q1,q2), a property Ψ(Tout) and a search space S of input tables, we

want to find a new search space S′ such that S′ is equivalent to S: i.e., if there exists T in ∈ S

s.t. Ψ(Jq(T in)K) holds, then there exists T
′

in
∈ S′ that also satisfies the property Ψ. Our goal is to

construct S′ such that S′ is smaller than S and can be explored faster by the SQL solver.

In the rest of this paper, we explain our approach using the query equivalence checking problem

(i.e., checking whether two queries q1 and q2 are semantically equivalent within some given space

S) as an illustrative example of reasoning tasks of the form Ψ(Tout) = ∃tO .ψ (tO ,Tout). Given two

queries q1 and q2, we callT in a counterexample if Jq1 (T in)K , Jq1 (T in)K. If q1 and q2 are semantically

inequivalent, then there must exist at least one tuple t such that Jq1 (T in)Kt , Jq2 (T in)K (i.e., its
multiplicity differs in the outputs of q1 and q2). We call such t a distinguishing output tuple that
demonstrates the semantic difference between the two queries.

3 OVERVIEW
We now use a concrete example for query equivalence checking to walk through our space refine-

ment algorithm. As shown in Figure 4, our space refinement algorithm takes as input two queries

q1, q2 and a search space S, and it outputs the search space after refinement S′ that is equivalent

to S for the purpose of checking q1 and q2.

Fig. 4. The search space refinement algorithm (dotted box). The algorithm takes as input a query q (or two
queries q1, q2) and a space of tables S for space refinement. It outputs a refined search space S′ that is
equivalent to S. S′ can be used in bounded verification or test data generation. Internally, the predicate
Φ is computed using backward provenance analysis of the given query using a symbolic output tuple
tO = (a1, ...,an). The predicate is then used by the space refinement module to refine S into S′.

To compute S′, our algorithm contains the following two main modules:

• (Provenance Analysis) The provenance analysis process derives a predicate ϕ from the queries

q1, q2 that describes a condition such that if two tables in the search space S satisfy it, they

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

157:8 Chenglong Wang, Alvin Cheung, and Rastislav Bodik

The decomposition of q1 Analysis steps Provenance predicates

(1) initialize

ϕ10 (t) =(t .job = tO .job ∧ t .dept = tO .dept
∧t .sum = tO .sum)

q1 = Select(q11, job < 10) (2) q1 → q11
ϕ11 (t) =(t .job = tO .job ∧ t .dept = tO .dept

∧t .sum = tO .sum ∧ t .job < 10)

q11 = Aggr(q12, [job, dept], Sum(sal)) (3) q11 → q12
ϕ12 (t) =(t .job = tO .job ∧ t .dept = tO .dept

∧t .job < 10)

q12 = Select(T , sal > 5) (4) q12 → T
ϕ1 (t) =(t .job = tO .job ∧ t .dept = tO .dept

∧t .job < 10 ∧ t .sal > 5)

tO ←− Jq1 (T)Kϕ10 ←− Jq11 (T)Kϕ11 ←− Jq12 (T)Kϕ12 ←− Tϕ1

Fig. 5. The analysis process of which tuples in input T contribute to the multiplicity of tO in the output
Jq(T)K. The analysis result is shown as a chain: for each arrow, the right hand side tuples evaluated from
each subexpression determine the multiplicities of tuples on the left hand side. We use Jq(T)Kϕ to denote
tuples in Jq(T)K satisfying the predicate ϕ. For example, Jq1 (T)Kϕ10 ←− Jq11 (T)Kϕ11 indicates that tuples in
Jq11 (T)K satisfying ϕ11 determines the multiplicities of tuples in Jq1 (T)K satisfying ϕ10.

would be equivalent with respect to finding an distinguishing output tuple tO . The predicate
ϕ is computed by combining the provenance predicate ϕ1 for tO in q1 (ϕ1 determines which

tuples in the input table T contribute to the multiplicity of the output tuple tO) and the

provenance predicate ϕ2 for tO in q2.

• (Space Refinement) Using the provenance predicate ϕ, we construct a refinement predicate Φ
describing what properties a table T need to satisfy to refine the search space and then use it

to construct the refined search space S′ from S.

Example. We reuse the equivalence checking example between q1 and q2 shown in Figure 2 to

demonstrate the space refinement algorithm. Given the queries q1 and q2 in Figure 2 and a search

space S, our goal is to determine whether q1 and q2 are equivalent within S. As mentioned in

section 1, since the two queries use different grouping keys, they are inequivalent, and our goal is

to find a counterexample for them. An counterexample is shown in Figure 3. Note that both queries

operate on input tables with schema Bonus(job, dept, sal).

3.1 Provenance Analysis
As shown in Figure 4, the first step is to perform a provenance analysis to determine which tuples

in T contribute to the multiplicity of tO in the outputs of q1 and q2 (Jq1 (T)K and Jq2 (T)K). We start

out by analyzing the provenance of tO with regard to q1.
We first convert the query into the sequential expressions shown in Figure 5 (left), where q1

is computed from its subexpression q11, q11 is computed from q12, and q12 is directly computed

from input table T . The operator Select(q, f) represents filtering the result of q using the predicate

f (for Having andWhere) and Aggr represents the SQL operator Group By. The key idea behind

provenance analysis process is as follows: given an expressionq = op(q′)whereq′ is a subexpression
of q, the key is to determine which tuples in Jq′(T)K are sufficient to determine the multiplicities

of (or, “contribute to”) the tuples in Jq(T)K that we are interested in. The goal is to “propagate”

the deduced provenance relation from the outermost query (e.g., q1) to the input table T , and
subsequently to represent the provenance information as a predicate over tuples. The concrete

analysis process is as follows:

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

Speeding up Symbolic Reasoning for Relational Queries 157:9

• (Step 1). We start the analysis process by analyzing which tuples in Jq1 (T)K contribute to the

multiplicity of the output tuple tO . Obviously, such tuples should have the same values for

each attribute as tO , and they can be represented as all tuples in Jq(T)K satisfying the predicate
ϕ10 (t) = (t .job = tO .job∧t .dept = tO .dept∧t .sum = tO .sum) (t .c stands for referencing column

c in t). We denote these tuples as Jq(T)Kϕ10

.

• (Step 2). For the expression q1 = Select(q11, job < 10), we analyze which tuples in the subexpres-

sion result Jq11 (T)K determine multiplicities of tuples in Jq(T)Kϕ10

. Since the latter determines

the multiplicity of tO in Jq1 (T)K, we can use this analysis result to propagate the provenance

information one level back. Since q1 contains the filter predicate job < 10, only tuples in Jq11 (T)K
and satisfying both ϕ10 (t) and job < 10 would contribute to Jq(T)Kϕ10

. Thus, we derive from ϕ10
and q1 the predicate ϕ11 (t) = (t .job = tO .job∧ t .dept = tO .dept∧ t .sum = tO .sum∧ t .job < 10)

to describe these tuples in Jq11 (T)K; we denote them as Jq11 (T)Kϕ11

.

• (Step 3). Similarly, we analyze which tuples in Jq12 (T)K contribute to Jq11 (T)Kϕ11

. Since q11 is

an aggregation query that groups by the job and dept columns, each tuple t in Jq11 (T)Kϕ11

is

determined by all tuples in Jq12 (T)K with the same job and dept values as t . Since ϕ11 states that
target entries in Jq11 (T)Kϕ11

are those belonging to the group tO .job, tO .dept with job < 10, we

derive the predicate ϕ12 (t) = (t .job = tO .job ∧ t .dept = tO .dept ∧ t .job < 10) to describe this

group in Jq12 (T)K. The result Jq12 (T)Kϕ12

then contains all tuples contributing to Jq11 (T)Kϕ11

.

• (Step 4). Last, we analyze which tuples in T contribute to Jq12 (T)Kϕ12

from the expression q12 =
Select(T , sal > 5). Similar to step 2, the desired tuples are those satisfying both sal > 5 and ϕ12.
We use the predicate ϕ1 (t) = (t .job = tO .job ∧ t .dept = tO .dept ∧ t .job < 10 ∧ t .sal > 5) to
describe these target tuples.

Figure 5 summarizes the relationship between these predicates:T ϕ1
determines Jq12 (T)Kϕ12

, Jq12 (T)Kϕ12

determines Jq11Kϕ11

, Jq11Kϕ11

determines Jq1 (T)Kϕ10

, and Jq1 (T)Kϕ10

determines the multiplicity of

tO in the output Jq1 (T)K. It indicates that ϕ1 specifies the provenance of tO in T with respect to q1.
Similarly, we also analyze q2 using the same output tuple tO to obtain the predicate ϕ2 (t) =

(t .job = tO .job ∧ t .job < 10 ∧ t .sal > 5) describing the provenance of tO in T with respect to q2.

3.2 Space Refinement
After computing ϕ1 and ϕ2, we combine them to find the provenance of tO with respect to both

queries: the provenance tuples are those from T contained by both T ϕ1
and T ϕ2

. We can use the

following ϕ to represent them.

ϕ (t) = ϕ1 (t) ∨ ϕ2 (t)
= (t .job = tO .job ∧ t .dept = tO .dept ∧ t .job < 10 ∧ t .sal > 5)
∨(t .job = tO .job ∧ t .job < 10 ∧ t .sal > 5)

= (t .job = tO .job ∧ t .job < 10 ∧ t .sal > 5)

Since tO used in the analysis is a symbolic tuple, the generated predicate ϕ generalizes to all

possible instances of an output tuple. Thus, for any instance of tO , T
ϕ
specifies which tuples in

T matters for the equivalence checking of q1 and q2 with respect to it: if tO is a distinguishing

output tuple for the two queries q1,q2 when evaluated on T , then T ϕ
is sufficient to replay this

difference. In other words, any two input table T1, T2 sharing the same fragments that satisfy ϕ
would be equivalent with respect to discovering the distinguishing output tuple tO .

Using ϕ, we construct a new search space S′ from S such that no two tables share the same

provenance tuples for any instances of tO . This space can be constructed by including only tables

T such that T ϕ = T , so that T
ϕ
1
= T

ϕ
2
⇒ T1 = T2 for each tO . The new search space is defined using

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

157:10 Chenglong Wang, Alvin Cheung, and Rastislav Bodik

the following predicate Φ over tables derived from ϕ. (We use ϕ (t , tO) to denote instantiating t , tO
with the provided arguments.)

Φ(T) = ∃tO .∀t ∈ T . ϕ (t , tO)
= ∃tO .∀t ∈ T . (t .job = tO .job ∧ t .job < 10 ∧ t .sal > 5)

The predicate Φ(T) specifies that: (1) the table should contain only one job group, and (2) for

each tuple t , t .job < 10 ∧ t .sal > 5. The new search space S′ is then defined as {T | T ∈ S ∧ Φ(T)}.
On the other hand, for each table T ∈ S, T ϕ

is contained in S′ for all tO . Thus, if we can find a

counterexample T in S with distinguishing output tuple tO , we can also find T ϕ
in S′ to reveal

the same distinguishing output tuple. Thus, S′ is a smaller yet equivalent space for checking the

equivalence between q1 and q2.
Figure 3 illustrates the relationship between the new search space S′ and S. T1 and T2 are both

counterexamples for q1 and q2 from S, and they both generate the distinguishing output tuple

tO = (2, 2, 21). Since S′ disallows tuples with multiple groups in the job column, we do not need

to consider T1 in the equivalence checking process. This indicates we can use S′ to speed up the

equivalence checking for q1 and q2 due to its smaller size.

The refined search space S′ can then be used to encode SMT formulas for bounded verification

to determine query equivalence. For instance, encoding S′ along with the queries to SMT formulas

and solving them will show that q1 and q2 are indeed inequivalent.

4 DEFINITIONS
In this section we formally define SQL operators and the predicate language we use to describe

provenance.

The SQL Language. Figure 6 shows the abstract syntax of SQL. A SQL query is formed by compo-

sitions of basic operators including Projection, Distinct (for de-duplication), Select (for filtering),
Join, Aggr, LeftJoin, Union and Rename on top of base tables. The constructor Aggr(c̄, ᾱ , c̄t ,q)
corresponds to the aggregation query “Select c̄ , α (ct) From q Group-By c̄ ”, where c̄ are group by

keys, c̄t are columns involved in aggregation, and ᾱ are aggregation functions used for each col-

umn. The constructor Proj(c̄,q) corresponds to the projection query “Select c̄ From q”, Distinct(q)
corresponds to “Select Distinct ∗ From q”, and others directly corresponds to their concrete forms.

q ::= T | Proj(v̄,q) | Rename(q, name, c̄) | Select(q, f) | Join(q1,q2) (Query)

| Aggr(c̄, ᾱ , c̄t ,q) | Distinct(q) | Union(q1,q2) | LeftJoin(q1,q2, f)
f ::= True | False | v op v | f And f | f Or f | Not f (Filters)

v ::= c | const | null | expr(v̄) (Values)

α ::= Max | Min | Sum | Count | Count-Distinct (Aggregators)

op ::= = | > | < | <= | >= | <> (Operators)

Fig. 6. The abstract syntax of SQL, where c ranges over column names, v over values, q over queries and f
over filter predicates. We use expr for arithmetic operations.

Predicates. Figure 7 defines the predicate language for describing data provenance. A predicate ϕ
is formed from compositions of primitives v op v , where a value v is either a reference of a tuple

(t .i represents the i-th element in the tuple t , t .c is the same but refers the tuple entry by name c),
an expression composed from operators like +, − or function application. In our paper, symbolic

tuples in predicates are allowed, and we use the notation ϕ (t1, t2) to denote substituting symbolic

tuples with input tuples t1, t2.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

Speeding up Symbolic Reasoning for Relational Queries 157:11

ϕ := true | false | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | v op v
v := t .i | t .c | const | expr(v̄)
op := = | > | < | <= | >= | <>

Fig. 7. The predicate language, where t ranges over tuples and c over column names.

We also use the notation T ϕ
to denote filtering a table by keeping only those tuples in T that

satisfy ϕ (x). Formally, T ϕ = {{t | t ∈ T ∧ ϕ (t)}} (we use {{·}} to represent a bag).

5 ALGORITHM
We next formally describe the space refinement algorithm. First, we introduce the provenance

analysis algorithm (subsection 5.1). Then, we present how we use the analysis result to conduct

search space refinement for the query equivalence checking problem (subsection 5.2). Without loss

of generality, we assume queries refer only to one input table T to simplify notation.

5.1 Symbolic Provenance Analysis
Given a query q, the provenance analysis algorithm computes the provenance of a symbolic tuple

tO with respect to q. Taking q and tO as input, the analysis returns a predicate ϕ describing which

tuples in input table T contribute to the multiplicity of tO in the query output.

Definition 5.1. (Provenance Predicate) ϕ is a provenance predicate for query q if the following

property is satisfied:

∀tO .∀T . Jq(T)KtO = Jq(T ϕ (t,tO))KtO .

In other words, the multiplicity of the tuple tO in the output of q is unchanged even though

input table T is restricted to only tuples t that satisfy property ϕ (t , tO). By definition, a query q
has multiple provenance predicates, including the trivial predicate true. To compute a non-trivial

predicate, we perform a backward analysis on q by propagating constraints from a tuple tO in the

query output back to the input, as shown in section 3.

5.1.1 The Algorithm. Key to the backward analysis is constructing a predicate ϕ that describes

which tuples in T contribute to the multiplicity of the output tuple tO ∈ Jq(T)K. To do so, the

backward analysis first constructs a predicate over q to specify which tuples in q determine the

multiplicity of tO in the output and then propagates it to its subexpressions until reaching the input

table T (the leaf subexpression).

Provenance Analysis. We compute the provenance predicate of a query q with respect to a

symbolic output tuple tO ∈ Jq(T)K in the following three steps:

(1) (Initialization). Construct the predicate ϕ0 to be ϕ0 =
∧n

i=1 (t .i = tO .i). This initial predicate
states that the provenance of tO in the output table Jq(T)K is itself.

(2) (Propagation). For each query q1 = op(q2) (or q1 = op(q2,q3)) where op is a SQL operator

defined in Figure 6, we propagate the provenance predicate ϕ1 over q1 to its subquery q2.
The result is a predicate ϕ2 over q2 specifying which tuples in Jq2 (T)K are sufficient to decide

multiplicities of tuples in Jq1 (T)Kϕ1

. Propagation rules are shown in Figure 8.

• We use the notation (q1 ∼ ϕ1) to describe that ϕ1 is the provenance predicate computed

at the query q1 (i.e., Jq1 (T)Kϕ1

is the provenance of the output tuple tO with respect to

Jq1 (T)K), and we use (q1 ∼ ϕ1) { (q2 ∼ ϕ2) to describe the propagation of ϕ1 over q1 to
the predicate ϕ2 over the subquery q2.
• Given a query q1 = op(q2,q3) and a predicate ϕ1 over q1, the rule (q1 ∼ ϕ1) { (q2 ∼ ϕ2) ∧
(q3 ∼ ϕ3) produces ϕ2 and ϕ3 specifying which tuples in Jq1 (T)K and Jq2 (T)K determine

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

157:12 Chenglong Wang, Alvin Cheung, and Rastislav Bodik

multiplicities of tuples in Jq1 (T)Kϕ1

. The conjunction states that Jq2 (T)Kϕ2

and Jq3 (T)Kϕ3

together determine Jq1 (T)Kϕ1

.

The propagation process terminates when all queries in the expression are T (i.e., reaching

leaf nodes of the AST), since the remaining AST depth of the algorithm decreases over

analysis steps. The propagation process can be presented as (q ∼ ϕ0) { · · · {
∧

k (T ∼ ϕk),

where the final state shows which tuples in T determine multiplicities of tuples in Jq(T)Kϕ0

.

The conjunction results from the fact that table T may appear multiple times in different

subqueries of q.
(3) (Merge). The final step is to resolve the expression

∧
k (T ∼ ϕk) to obtain a provenance

predicate ϕ over T s.t. T ϕ
determines Jq(T)Kϕ0

. According to the merge rule (Figure 9), we

construct ϕ as ϕ =
∨

k ϕk . The correctness of ϕ is shown by Lemma 5.4.

Figure 8 and Figure 9 show the analysis rules. We describe these rules below.

• (Select). Given a query q = Select(q1, f) and a predicate ϕ, the predicate ϕ1 over q1 is the
conjunction of ϕ with a predicate formed by replacing every column reference ci in the filter

predicate f with t .i . The idea is that tuples in Jq1 (T)K satisfying f ∧ ϕ alone are sufficient to

determine Jq(T)Kϕ . For example, if q = Select(q1, c1 < 5) and ϕ = (t .2 > 1), then the tuples

in Jq1 (T)K satisfying ϕ1 = (t .2 > 1 ∧ t .1 < 5) determine tuples in Jq(T)K satisfying ϕ.
• (Projection). Given a query q = Proj(v̄,q1) and a predicate ϕ, we compute the predicate ϕ1 by
substituting column references in ϕ with expressions specified by v̄ , followed by abstracting

column names using tuple expression t .i . For example, given a query q = Proj(c3 + 2, c1, q1)
(corresponding to Select c3 + 2, c1 From q1) and ϕ = (t .1 = 1 ∧ t .2 > 1), the output predicate
ϕ1 for q1 is ϕ1 = (t .3 + 2 = 1 ∧ t .1 > 1). The rationale is that the multiplicity of the tuple

(x1,x2) in Jq(T)K is determined by all tuples t in Jq1 (T)K such that t .3 + 2 = x1 and t .1 = x2.
• (Join). To propagate ϕ through q = Join(q1,q2), the rule breaks ϕ into ϕ1 ∧ ϕ2 ∧ ϕ3, where
ϕ1 contains terms that involve only columns from q1, ϕ2 contains terms that involve only

columns from q2, and ϕ3 contains terms that that involve both. Then, ϕ1 is propagated to

q1, ϕ2 is propagated to q2, and ϕ3 is discarded. Discarding ϕ3 allows the analysis continues
independently in different branches, thus reducing the complexity of the resulting predicate.

This approximation retains the soundness of the analysis: since Jq1 (T)Kϕ1 × Jq2 (T)Kϕ2

sub-

sumes

(
Jq1 (T)Kϕ1 × Jq2 (T)Kϕ2

)ϕ3

and the latter is sufficient to determine Jq(T)Kϕ , Jq1 (T)Kϕ1 ×

Jq2 (T)Kϕ2

is sufficient to determine Jq(T)Kϕ as well. On the other hand, discarding ϕ3 weakens
the provenance predicate we obtain in the final result, which could limit the pruning power

of the final provenance predicate. We leave a detailed discussion of the trade-off between

analysis performance and pruning power to the end of this section. For example, the propa-

gation of ϕ = (t .1 = a1 ∧ t .2 > t .3 ∧ r .3 < 5) through query q = Join(q1,q2) is computed by

first constructing ϕ1 = (t .1 = a1) for q1, ϕ2 = (t .1 < 5) for q2, and discarding ϕ3 = (t .2 > t .3)
(since it refers to columns from both subqueries).

• (Aggregate). To propagate a predicate ϕ over an aggregation query q = Aggr(c̄, ᾱ , c̄t ,q1) to
its subquery q1, we first split ϕ into ϕ1 ∧ ϕ2, where column references in ϕ1 are limited to

grouping columns c̄ , and then set ϕ1 as the target predicate for q1. Similar to the rule for Join,
this is an approximation of the aggregation semantics, it guarantees that all tuples in each

group satisfy ϕ1 are retained so that Jq1 (T)Kϕ1

is sufficient to compute aggregation results in

Jq(T)Kϕ . We discard ϕ2 to retain analysis efficiency.

• (Union, Rename). The predicates ϕ1,ϕ2 for the subqueries are the same as ϕ.
• (LeftJoin). Unlike for Join, the predicate for the subquery q2 in LeftJoin is set to true instead
of ϕ2. This difference is introduced by the non-monotonicity of Left Join, i.e., given T =

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

Speeding up Symbolic Reasoning for Relational Queries 157:13

(q ∼ ϕ) { (q1 ∼ ϕ1) ∧ ...

q = T
(Table)

(q ∼ ϕ) { (T ∼ ϕ)

q = Select(q1, f) schema(q1) = c̄
(Select)

(q ∼ ϕ) {
(
q1 ∼ ϕ ∧

[
ci 7→ t .i

]
f
)

q = Distinct(q1)
(Distinct)

(q ∼ ϕ) { (q1 ∼ ϕ)

q = Proj(v̄,q1) schema(q1) = c̄

(q ∼ ϕ) {
(
q1 ∼

[
t .i 7→

([
c j 7→ t .j

]
vi

)]
ϕ
)

q = Join(q1,q2) ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3 |schema(q1) | = n1
colRef (ϕi) ∩ schema(qi) = ∅ (i=1,2)

(Join)

(q ∼ ϕ) { (q1 ∼ ϕ1) ∧ (q2 ∼ [t .i 7→ t .(i − n1)]ϕ2)

q = Union(q1,q2)
(Union)

(q ∼ ϕ) { (q1 ∼ ϕ) ∧ (q2 ∼ ϕ)

q = Rename(q1, name, c̄)
(Rename)

(q ∼ ϕ) { (q1 ∼ ϕ1)

q = LeftJoin(q1,q2, f) ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3 colRef (ϕi) ∩ schema(qi) = ∅ (i=1,2)
(LeftJoin)

(q ∼ ϕ) { (q1 ∼ ϕ1) ∧ (q2 ∼ true)

q = Aggr(c̄, ᾱ , c̄t ,q1)
ϕ = ϕ1 ∧ ϕ2 colRef (ϕ1) ⊆ {c̄}

(Aggr)

(q ∼ ϕ) { (q1 ∼ ϕ1)

(qi ∼ ϕi) {
∧

k

(
q′ik ∼ ϕ

′
ik

)
(Step)∧

i (qi ∼ ϕi) {
∧

i,k

(
q′ik ∼ ϕ

′
ik

)
Fig. 8. Propogation rules. Each propagation step (q ∼ ϕ) { (q1 ∼ ϕ1) computes the constraint ϕ1 that
specifies which tuples in Jq1 (T)K are sufficient to determine the multiplicities of tuples in Jq(T)K that satisfy
constraint ϕ. The auxiliary function colRef returns the column a predicate refers to, and the function schema
extracts the output schema of a query.

(Merge)∧
i (T ∼ ϕi) { (T ∼

∨
i ϕi)

Fig. 9. The merge rule. It computes the provenance constraint of the table T by merging contraints obtained
from backward analysis.

JLeftJoin(T1,T2)K, if we remove a tuple from T2 (denoted as T −
2
), the result JLeftJoin(T1,T −2)K

is not subsumed by T . The enforcement of using the predicate true for q2 in our rule design

is a conservative way to preserved all tuples contributing to tuples in Jq(T)K.

5.1.2 Properties of the Analysis Algorithm. We now demonstrate properties of the provenance anal-

ysis algorithm. Lemma 5.2 states that each step of the analysis correctly propagates the provenance

predicate to its subquery (subqueries). Lemma 5.3 states that weakening any provenance predicate

generated by the algorithm still results in a provenance predicate. The weakening property allows

us to generate not necessarily the strongest but sound constraints, and it guarantees the correct-

ness of the merge rule, where predicates ϕk ’s are weakened to their disjunction

∨
k ϕk . Finally,

Lemma 5.4 shows that the provenance analysis algorithm returns a provenance predicate over T
for the symbolic output tuple tO .

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

157:14 Chenglong Wang, Alvin Cheung, and Rastislav Bodik

Lemma 5.2. For each propagation rule (q ∼ ϕ) {
∧

k (qk ∼ ϕk), the following property holds:

∀T ,T ′. *
,

∧
k

(
Jqk (T)K

ϕk = Jqk (T ′)K
ϕk
)+
-
=⇒
(
Jq(T)Kϕ = Jq(T ′)Kϕ

)
Proof Sketch. By design (details are shown in the rule explanations in subsection 5.1), every rule

guarantees that tuples excluded from Jq1 (T)K by ϕi do not contribute to multiplicities of tuples in

Jq(T)Kϕ . □

Lemma 5.3 (Weakening). For each propagation rule (q ∼ ϕ) {
∧

k (qk ∼ ϕk), if ∀t .(ϕk ⇒ ϕ ′k)
holds for all k , then the following property holds:

∀T ,T ′. *
,

∧
k

(
Jqk (T)K

ϕ′k = Jqk (T ′)K
ϕ′k
)+
-
=⇒
(
Jq(T)Kϕ = Jq(T ′)Kϕ

)
Proof Sketch. The weakening property for monotonic queries operators (Select, Proj, Join) is obvious,
since appending extra rows not satisfying the original constraint do not affect Jq(T)Kϕ . For non-
monotonic operators Aggr, the rule ensures that the whole a whole group would either all be

included or none get included for each Group-by group; therefore, relaxing the constraint ϕi does
not introduce new entries in the same group. For LeftJoin, the rule disallows propagation of the

predicate to the right hand side query q2 (the predicate is true, which can no longer be weakened);

therefore, no new tuples with null placeholders will be introduced in the result. □

Lemma 5.4 (Soundness). For a given query q whose output schema size is n, let ϕ0 =
∧n

i=1 (t .i =
tO .i), assume (q ∼ ϕ0) { · · · {

∧
k (T ∼ ϕk) where tO is a symbolic output tuple; then, ϕ =

∨
k ϕk

is a provenance predicate over T with respect to the tuple tO in Jq(T)K.

Proof Sketch. By induction on the propagation rules, we can apply Lemma 5.2 to show that

T ϕ1 , . . . ,T ϕn
together determine the multiplicity of tO in Jq(T)K. Then by the weakening property,

we can weaken every ϕi to
∨

k ϕk while retaining soundness. Thus,
∨

k ϕk is a provenance predicate

over T for Jq(T)Kϕ0

(i.e., the tuple tO in Jq(T)K). □

5.1.3 The Effect of Analysis Approximation. Note that our inference algorithm provides a sound

provenance predicate but does not produce the strongest provenance predicate at each analysis

step, i.e., the property in Lemma 5.2 does not hold if we flip the “=⇒” into “⇐=”. This is because

the propagation process does not use the full semantics of SQL in the analysis process for the

purpose of improving analysis efficiency. For example, the Join propagation rule does consider

join predicates that refer to columns in both tables (by discarding ϕ3); as a result, Jq1 (T)ϕ1K and
Jq2 (T)ϕ2K can include tuples that have no matching tuples in the other table. Similarly, the Aggr
propagation rule does not consider the semantics of aggregation functions, and it conservatively

keeps all tuples in Jq1 (T)K that are in the same groups as tuples in Jq(T)Kϕ . This design decision

trades-off between the cost of provenance analysis and the effectiveness of the generated search

space: we could ask a solver to find the strongest provenance predicate for the tuple tO in Jq(T)K,
but its computation time would be the same as directly asking the solver to solve the equivalence

problem, making the analysis pointless. As we will show in section 6, although the generated

provenance predicate is not the strongest, it is highly effective in speeding up various symbolic

SQL reasoning tasks.

5.2 Space Refinement
We now introduce how to refine the search space for the query equivalence checking problem

between two queries q1 and q2 using their provenance predicates ϕ1 and ϕ2 over input table T .

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

Speeding up Symbolic Reasoning for Relational Queries 157:15

Merge Predicates. We first merge ϕ1 and ϕ2 to form a provenance predicate that is sound for both

tables using theMergeRule in Figure 9. Sinceϕ1 specifies which tuples inT decide the multiplicity of

tO in Jq1 (T)K, and ϕ2 specifies which tuples inT decide the multiplicity of tO in Jq1 (T)K, combining

them yields a predicate ϕ = ϕ1 ∨ ϕ2 that is sufficient to determine the multiplicity of tO in both

outputs of q1 and q2, as guaranteed by the weakening property (Lemma 5.3). Formally, the merged

predicate ϕ holds the following property (recall that ϕ is shorthand for ϕ (t , tO), which is a function

over tO).

∀T , tO .
(
Jq1 (T)KtO = Jq1 (T ϕ)KtO

)
∧
(
Jq2 (T)KtO = Jq2 (T ϕ)KtO

)

Space Refinement. Given a table T and an output tuple tO , the provenance predicate ϕ is a

predicate over tuples that determines which tuples in T are sufficient to decide the multiplicity of

tO in both query outputs. Next, we lift ϕ from a predicate over tuples to a predicate over tables to

refine the search space. Specifically, we define:

Φ(T) = ∃tO .∀t ∈ T . ϕ (t , tO)

as a table predicate. Given a table search space S, we construct a new search space S′ using Φ as

follows:

• If the space S satisfies the property that ∀T ,T ′ . T ′ ∈ S ∧T ⊆ T ′ ⇒ T ∈ S (i.e., S is closed

under containment):

S′ = {T ∈ S | Φ(T)}

• Otherwise, we first construct the closure S∗ = {T | ∃T ′ ∈ S ∧T ⊆ T ′} and then apply the

above with S = S∗.

Intuitively, the new search space S′ contains only one representative from each equivalence class

of tables with respect to input queries: i.e., for each instantiation of output tuple tO , if T
ϕ
1
= T

ϕ
2

(ϕ also instantiated with tO), only one table remains in the new search space S′. For the second

case, we construct the closure of S∗ since the fragment contributing to an output tuple may not

be contained in S. For example, if S contains only tables with exactly 2 distinct tuples (and not

containing those with 1 tuple), the table fragment identified by a provenance predicate might

consist of only one tuple and not be contained in S.

As shown in section 6, we use Φ to identify equivalent tables in the search space S to speed up

query equivalence checking. We formally state the relationship between S and S′ below.

Lemma 5.5 (Removing Redundancy). Given q1, q2, a search space S, and S′ is the refined
search space constructed from S using a table constraint. If there exists a table T ∈ S such that
Jq1 (T)K , Jq2 (T)K, then there also exists a table T ′ ∈ S′ such that Jq1 (T ′)K , Jq2 (T ′)K.

Proof Sketch. Assume that T ∈ S is a counterexample with distinguishing output tO for q1 and q2
(with multiplicitiesm1,m2, respectively). Then, T

ϕ (t,tO)
is a table from S′. According to Def. 5.1,

applying q1, q2 onT
ϕ (t,tO)

also results inm1,m2 as the multiplicities of tO . This shows thatT
ϕ (t,tO)

is also a counterexample for q1,q2. □

This property guarantees that if we fail to find a counterexample in S′ for two queries q1 and q2,
then q1 and q2 are guaranteed to be equivalent in S. We show how to encode the refined search

space in Appendix A.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

157:16 Chenglong Wang, Alvin Cheung, and Rastislav Bodik

6 EVALUATION
We evaluate the effectiveness of our space refinement algorithm on three tools that reason about

tables and queries for different purposes: (1) bounded verification [Chu et al. 2017a], (2) test data

generation (in the context of mutation testing[Chandra et al. 2015], auto-grading [Gupta et al. 2010])

and unit test data generation [Veanes et al. 2010], and (3) concolic testing [Tanno et al. 2015]. In

each scenario, we run the tool on benchmarks extracted from the original paper with and without

space refinement, and compare performance differences. In addition, we run each experiment twice

with Cosette encoding [Chu et al. 2017a] and Qex encoding [Veanes et al. 2010] to demonstrate

that our space refinement algorithm is general to different underlying solver implementations.

6.1 Experiment 1: Bounded Verification
We first study the space refinement algorithm on bounded verification. To do so, we use 46 bench-

marks collected from the 232 test cases for the SQL rewrite rules in the Apache Calcite project,
3

an open source query optimization framework used by many database systems. Cases excluded

from the benchmark are either those testing non-SQL feature or those containing features that

are currently not support by Cosette and Qex (e.g., Partition, Order-By, Case and In). These 46
benchmarks contain non-trivial use of SQL operators: 29 cases contain queries with more than 5

subqueries, and 41 cases involve tables with more than 9 columns.

For each benchmark and each encoding method (i.e., Cosette and Qex), we chose the verification

bound as the size of the maximum search space that the solver can completely explore within 600

seconds without space refinement. We next re-run the solver on the same bound but with space

refinement. We measure the search space based on the number of symbolic values used in the

encoding and report the relative performance with and without space refinement for each encoding

approach.

This experiment helps us answer how the refinement algorithm affects the bounded verification

process of different types of query, different search space size and different underlying solver

choices.

Conclusion 1. Queries with aggregations benefit most from space refinement.

As shown in Table 1, 19 out of the 21 cases with aggregations show significant speedup in the

bounded verification task, using both Qex and Cosette encodings. The medium is a 48× speedup

for Cosette and a 58× speedup for Qex. The speedup mainly comes from the reduction of the

number of groups that the solver needs to consider while using the refined search space. In such

cases, the refinement algorithm determines it is sufficient to encode only a small number of groups

to prove the equivalence between the given queries. The two cases that didn’t benefit from the

refinement algorithm are boolean queries, i.e., queries of the form “Select 1 From . . . ”. In these cases,

query inputs only affect how many “1”s are returned, and the provenance analysis algorithm can

not propagate the initial predicate to its subqueries in a non-trivial way. As a result, the space

refinement algorithm determines that all tuples in the input table are necessary to determine the

output tuple (the tuple (1)) multiplicity.

For the other 25 cases that do not involve aggregation, only 6 cases display significant speedup.

The other 19 cases are either unaffected or slowed down (minor slow-down with less than 10% time

difference). These 25 cases are unions of conjunctive queries (UCQs) constructed from Select, Join,
and Union operators. In these cases, since the query semantics does not introduce interactions

among tuples, the underlying symbolic evaluator and SMT solver can also exploit the independence

among different tuples when solving generated constraints. As a result, such queries benefit less

3https://calcite.apache.org

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

 https://calcite.apache.org

Speeding up Symbolic Reasoning for Relational Queries 157:17

from space refinement. The speedup achieved in the 6 non-aggregation cases comes from backward

constant propagation, i.e., the propagation constants appeared in query predicates to input tables;

this propagation allows us to preassign values to certain parts of the symbolic table, which reduces

the number of symbolic values need to encode the search space. For example, given the query

“Select . . .Where c = 10”, the analysis algorithm propagates the constant 10 from the predicate to

the input table through a provenance predicate t .1 = 10, which frees us from using symbolic values

for the column c in the input table.

Conclusion 2. The benefits of space refinement generalize to different encoding methods and different
query sizes.

While the speedup varies for different encoding methods, i.e., Cosette v.s. Qex, whether a pair of

queries benefits from space refinement is not affected. All cases in Table 1 with over 2× speedups

display under Cosette encoding also display a noticeable improvement under Qex encoding. Also,

compared to query structural differences (e.g., whether the target query uses aggregation or contains

constants), the differences in query sizes have little influence on the amount of speedup gained

from space refinement.

Illustrative Examples. In the following, we provide two examples to demonstrate the strengths

and limitations of the space refinement algorithm. Both examples run on the following two tables:

Dept(deptno:int , name:str)

Emp(empno:int , ename:str , job:int , mgr:int , hiredate:int ,

comm:int , sal:int , deptno:int , slacker:int)

• (PushFilterPastAggGroupSets2). In this example, the refinement algorithm produces the prove-

nance predicate ϕ (t , tO) = (t .name = “Charlie′′ ∧ t .name = tO .1 ∧ t .deptno = tO .2). The
predicate determines that (1) we need to consider only the group with name ‘Charlie’, and (2)
we only need to consider one department group. In this way, the solver no longer needs to

consider the all possible ways to group the name and deptno columns (which is exponential

to the input table size). This result in a speedup of 160×, as shown in Table 1.

-- q1

Select name , deptno , Count (*)

From Dept

Group By name , deptno

Having name = 'Charlie ';

-- q2

Select t2.name , t2.deptno , Count (*)

From (Select name , deptno

From Dept) As t2

Where t2.name = 'Charlie '

Group By t2.name , t2.deptno;

• (TransitiveInferenceJoin3Way). This example shows a boolean query that does not benefit

from space refinement. Since both these query outputs are tables consisting of tuples with

content 1, our algorithm generates only a trivial provenance predicate ϕ (t , tO) = (t .deptno >
7 ∧ tO .1 = 1) that cannot effectively reduce complexity of encoding the search space.

-- q1

SELECT 1

FROM (SELECT * FROM emp

WHERE emp.deptno > 7) AS t

INNER JOIN emp AS EMP0

ON t.deptno = EMP0.deptno

INNER JOIN emp AS EMP1

ON EMP0.deptno = EMP1.deptno;

-- q2

SELECT 1

FROM (SELECT * FROM emp

WHERE deptno > 7) AS t1

INNER JOIN (SELECT * FROM emp

WHERE deptno > 7) AS t2

ON t1.deptno = t2.deptno

INNER JOIN (SELECT * FROM emp

WHERE deptno > 7) AS t3

ON t2.deptno = t3.deptno;

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

157:18 Chenglong Wang, Alvin Cheung, and Rastislav Bodik

In sum, the search space refinement algorithm effectively speeds up bounded verification of an

important fraction of complex queries.

6.2 Experiment 2: Test Data Generation
Our second experiment studies how the space refinement algorithm can be used to improve test

data generation tasks, including: (1) generating inputs to disambiguate non-equivalent query pairs

(for mutation testing and auto-grading) and (2) generating unit test inputs for the given query such

that the query returns a non-empty output [Veanes et al. 2010].

In this experiment, we use 13 query disambiguation benchmarks and 2 unit test generation

benchmarks from prior work. In the benchmark collection phase, we exclude cases whose distin-

guishing input tables are those with only 1 tuple, as all such cases can be solved within 0.2 seconds
by current solvers and do not present scalability challenges in terms of search space size. For each

benchmark, we measure the time each solver it takes (Cosette, Qex) to find the first desirable model

with and without search space refinement.

Conclusion 3. The benefit of space refinement is limited when the target model size is small.

As shown in Table 2, the refined space results in speedups for 7 cases under Qex encoding and 6

cases under Cosette encoding. These cases are harder cases whose solutions require more tuples.

Other cases are either unaffected or show an insignificant (< 0.5 seconds) slowdown. The speedup
is limited in these benchmarks because most cases requires tables only with 2 distinct tuples to

disambiguate. As a result, the benefit of space size reduction does not compensate for the overhead

of encoding the refinement predicate.

6.3 Experiment 3: Concolic Testing
Last, we demonstrate that the space refinement algorithm can speed up cocolic testing of relational

queries. In this experiment, we manually translate the following two pairs of representative SQL

queries (q1,q2 and q3,q4) into Java programs and call the CATG concolic testing engine to test

whether the two queries are equal.

-- q1

SELECT id , SUM(val)

FROM Flight

WHERE year > 2010

GROUP BY fid;

-- q2

SELECT fid ,year

FROM Flight

WHERE year > 2010

GROUP BY fid , year;

-- q3

SELECT fid ,year

FROM Flight

WHERE year > 2010

AND fid = carrier;

-- q4

SELECT fid ,year

FROM Flight

WHERE year > 2015

AND fid = carrier;

Given a pair of queries, we create a Java snippet shown below, where the two queries take as

input a randomly initialized concolic table. Then, we run the CATG concolic testing engine on the

Java snippet and log the time spent by the concolic tester to run 20 test iterations. We set the size of

the symbolic input table (the number of tuples in the table) as a variable and study the performance

of the concolic tester.

... // input and query definition

if (tableEqual(q1.execute (), q2.execute ()) {

System.out.print("Reach EQ Branch");

} else {

System.out.print("Reach NEQ Branch");

}

Conclusion 4. The benefit of space refinement in concolic testing increases as input space size
increases.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

Speeding up Symbolic Reasoning for Relational Queries 157:19

Table 1. The evaluation result for bounded verification on Calcite benchmarks. Column #sq refers to the
number of subqueries in the target query for measuring complexity, #SV refers to the number of symbolic
values used in encoding the search space, and tS , tS′ refer to the time spent by the solver without and with
space refinement.

Calcite (with aggregates) #sq

Qex Encoding Cosette Encoding

#SV tS (s) tS′ (s) Speedup #SV tS (s) tS′ (s) Speedup

PushFilterPastAgg 3 14 33.44 0.26 130.0 15 107.61 0.26 410.0

PushFilterPastAggTwo 3 16 195.55 0.69 280.0 19 154.43 0.56 280.0

AggConstKeyRule3 3 63 115.1 0.72 160.0 59 92.89 0.47 200.0

PullFilterThroughAgg 3 63 58.92 0.69 86.0 68 119.08 0.7 170.0

PushFilterPastAggGroupSets2 3 16 58.67 0.73 81.0 21 121.18 0.74 160.0

PullFilterThroughAggGroupSets 3 54 49.59 0.58 86.0 59 59.97 0.57 100.0

PullAggThroughUnion 6 45 61.83 1.06 58.0 50 92.28 1.15 81.0

AggProjectPullUpConsts 2 45 84.72 1.47 58.0 28 36.55 0.61 60.0

PushAvgThroughUnion 6 63 86.58 3.05 28.0 68 188.93 3.79 50.0

PushAggThroughJoin1 6 33 221.71 5.65 39.0 38 263.84 5.5 48.0

PushFilterPastAggGroupSets1 2 24 163.09 1.97 83.0 27 60.4 1.73 35.0

AggConstKeyRule2 2 108 69.82 2.68 26.0 113 76.72 2.63 29.0

PushFilterPastAggThree 2 117 128.88 3.75 34.0 113 87.62 3.07 29.0

PushAvgGroupSetsThroughUnion 6 63 215.38 3.47 62.0 59 54.38 2.05 27.0

PushAggThroughJoin3 5 35 32.14 3.19 10.0 38 28.32 2.47 11.0

AggProjectMerge 2 99 149.11 2.55 58.0 82 120.19 12.21 9.8

AggGroupSetsProjectMerge 2 99 148.58 2.58 58.0 82 120.35 12.26 9.8

PushAggThroughJoinDistinct 6 35 146.25 11.69 13.0 29 57.0 6.29 9.1

AggConstKeyRule 2 54 97.12 3.8 26.0 50 12.89 1.95 6.6

TransitiveInferAgg 6 63 69.06 69.56 0.99 59 42.0 40.44 1.0

TransitiveInferJoin3wayAgg 9 45 106.76 107.36 0.99 59 35.56 37.64 0.94

Calcite (without aggregates) #sq #SV tS (s) tS′ (s) Speedup #SV tS (s) tS′ (s) Speedup

PullConstIntoProject 2 126 98.26 0.52 190.0 122 71.05 0.5 140.0

PullConstIntoFilter 3 171 45.45 0.88 52.0 176 54.96 0.89 62.0

RemoveSemiJoinFilter 5 79 55.14 0.85 65.0 38 0.38 0.04 9.7

RemoveSemiJoinRightFilter 7 46 57.31 1.36 42.0 26 0.35 0.04 7.8

MergeJoinFilter 5 46 54.54 0.44 120.0 37 1.12 0.15 7.4

MergeFilter 3 290 5.73 6.88 0.83 283 10.65 7.03 1.5

TransitiveInferUnion3way 13 54 106.9 108.8 0.98 32 0.95 0.96 1.0

PushJoinThroughUnionOnRight 10 72 62.92 63.3 0.99 59 7.73 7.72 1.0

PullConstThroughUnion3 6 1188 7.15 7.07 1.0 1157 7.52 7.36 1.0

TransitiveInferJoin 6 90 140.83 142.33 0.99 68 47.35 46.93 1.0

PushJoinCondDownToProject 6 222 37.77 38.37 0.98 227 38.45 37.28 1.0

TransitiveInferUnion 9 63 79.72 78.27 1.0 41 11.99 11.93 1.0

TransitiveInferJoin3way 9 81 195.8 200.27 0.98 41 0.59 0.59 1.0

TransitiveInferUnionAlwaysTrue 10 45 113.56 113.5 1.0 32 0.91 0.91 1.0

TransitiveInferProject 6 90 145.19 145.35 1.0 68 52.94 52.16 1.0

TransitiveInferComplexPredicate 7 63 100.72 101.25 0.99 32 172.81 170.94 1.0

RemoveSemiJoinRight 6 101 69.02 68.49 1.0 103 71.41 70.37 1.0

TransitiveInferConjInPullUp 6 72 69.42 69.3 1.0 41 7.08 7.04 1.0

PushJoinThroughUnionOnLeft 10 72 78.67 78.44 1.0 59 10.11 10.05 1.0

ExtractJoinFilterRule 4 418 18.12 18.52 0.98 423 17.48 17.25 1.0

TransitiveInferPullUpThruAlias 6 45 8.99 9.18 0.98 41 107.75 105.92 1.0

SemiJoinReduceConsts 8 234 44.52 43.97 1.0 239 44.57 44.88 0.99

PushProjectPastSetOp 6 972 8.17 8.51 0.96 959 8.14 8.44 0.96

PullConstThroughUnion 6 918 8.39 8.96 0.94 910 8.55 8.98 0.95

PullConstThroughUnion2 5 909 8.43 8.68 0.97 905 10.15 11.2 0.91

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

157:20 Chenglong Wang, Alvin Cheung, and Rastislav Bodik

Table 2. The evaluation result for test data generation benchmarks. Column #sq refers to the number of
subqueries in the target query for measuring complexity, #SV refers to the number of symbolic values used in
encoding the search space, and tS , tS′ refer to the time spent by the solver without and with space refinement.

Case #Q

Qex Encoding Cosette Encoding

#SV tS (s) tS′ (s) Speedup #SV tS (s) tS′ (s) Speedup

mutant-1 8 16 0.28 0.34 0.83 18 0.49 0.08 6.0

mutant-2 4 15 2.06 0.98 2.1 17 2.65 1.83 1.4

mutant-3 7 36 12.46 8.3 1.5 43 37.74 27.8 1.4

mutant-4 7 30 7.26 6.93 1.0 37 7.16 6.69 1.1

mutant-5 8 38 0.33 0.33 1.0 45 0.65 0.65 1.0

mutant-6 7 18 1.59 1.61 0.99 25 4.3 4.27 1.0

hw-1 5 8 0.46 0.47 0.97 12 1.08 1.07 1.0

mutant-7 13 6 9.12 9.46 0.96 5 0.56 0.56 1.0

mutant-8 5 8 0.3 0.29 1.0 15 0.27 0.27 1.0

hw-2 5 8 0.31 0.31 1.0 12 0.24 0.24 0.99

mutant-9 5 16 0.15 0.14 1.1 23 0.19 0.2 0.95

hw-3 4 21 53.51 17.99 3.0 18 2.2 2.31 0.95

hw-4 4 16 1.69 0.58 2.9 18 6.85 7.58 0.9

unit-test-1 4 13 0.12 0.1 1.1 13 0.22 0.16 1.3

unit-test-2 4 14 3.55 1.98 1.8 8 0.46 0.39 1.2

In both examples, the concolic test engine successfully found input tables to cover both branches

in the Java snippet. As shown in Figure 10, both examples indicate that the refined search space

enables the concolic test engine to run faster in the testing process. In the first example (q1,q2), the
provenance predicate ϕ (t , tO) = (t .fid = tO .1 ∧ t .year > 2010) restricts the choices of the grouping
key fid to be the same across the table. In the second example, the provenance predicate determines

that it is sufficient to make both fid and year to be the same. Thus, the concolic test engine benefits

from the smaller size of the refined search space to generate inputs faster.

Fig. 10. The experiment for comparing query equivalence between q1,q2 (left) and q3,q4 (right).

7 RELATEDWORK
SQL Equivalence. SQL query equivalence is a problem that has been extensively study in the

database theory community [Chaudhuri and Vardi 1993; Cohen 2009; Cohen et al. 2007; Sagiv and

Yannakakis 1980]. In general, query equivalence is undecidable, and subsequent study aims to

identify decidable subsets of SQL and build decision procedures for them. Known decidable SQL

subsets include conjunctive queries (CQ) [Chaudhuri and Vardi 1993], CQ with union (UCQ) [Sagiv

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

Speeding up Symbolic Reasoning for Relational Queries 157:21

and Yannakakis 1980], CQ with linear arithmetic [Cohen 2009], and CQ with one aggregate in the

outer-most layer [Cohen et al. 2007].

Tools for reasoning about query equivalence include HottSQL [Chu et al. 2017b], a proof envi-

ronment built on top of Coq for interactive SQL proof that targets a different verification method,

and Cosette [Chu et al. 2017a], an SMT-based verifier for bounded verification. As shown in our

case study, our space refinement algorithm can be used to improve symbolic reasoning of SQL

equivalence.

[Schäfer and de Moor 2010] describes a type inference algorithm that maps datalog queries into

type programs formulated in (decidable) monadic datalog to check Datalog query containment.

These types are abstractions of the program semantics, and they can be used to optimize query

execution as well as query containment checking. In particular, containment checking within the

type language is sound but incomplete. Their abstraction is a sound approximation of all possible

input tables. We also map programs (i.e., queries) into constraints for equivalence checking but with

different goals: we are interested in producing symbolic constraints that can be used to generate

concrete test cases or counterexamples in addition to proving query equivalence. As a result, our

approach uses the provenance of query outputs to speed up symbolic reasoning from existing

solvers, rather than approximating programs semantics.

Test Data Generation. Tools for generating test data for SQL queries include Qex [Veanes et al.

2009, 2010], XData [Gupta et al. 2010] and Tesma [Tanno et al. 2015]. Qex is a SMT-based tool for

generating unit tests from a given query and test assertion, where the goal is to construct unit tests

from the data, query and assertion. XData is a mutation testing tool for SQL: given an input query,

XData generates mutations of the query and then asks the underlying SMT solver to construct a

distinguishing input to kill the mutant. It then adds the generated distinguishing input to the test

suite for database testing or grading [Bhangdiya et al. 2015]. Tesma is a concolic test engine that

allows testing database applications under the concolic test framework. As shown in our evaluation,

our space refinement algorithm can be applied to speedup test data generation.

Symmetry Breaking. BothQex and Cosette include symmetry breakingmodules for compiling into

SMT formulas, similar to traditional symmetry breaking techniques [Crawford et al. 1996; Déharbe

et al. 2011] used in constraint solving. Our approach instead utilizes high-level program semantics

and breaks symmetry by identifying table equivalence given the semantics of the input queries.

Also, our approach is specific to queries but generalizable to underlying encoding methods, which

allows the opportunity to combine it with other lower-level symmetry breaking techniques [Torlak

and Bodík 2014].

Provenance Analysis. Provenance analysis has been studied in both scientific computation [Bose

and Frew 2005] and the database community [Buneman et al. 2006, 2001; Cui et al. 2000]. Data

provenance has been applied to incremental view updates and data filtering [Green et al. 2007] to

improve database performance. Our symbolic provenance analysis resembles these approaches,

but our algorithm generates predicates to describe the provenance relation for symbolic output
tuples, and we extend provenance reasoning to multiple queries simultaneously to solve the query

equivalence problem. Our symbolic provenance analysis is a backward abstract analysis that

feeds its result to improve the forward concrete analysis (e.g., compiling queries to SMT formulas,

generating test cases). Previous work used backward analysis to summarize information that is

not readily available to forward analysis, making the latter more efficient [Chandra et al. 2009;

Duesterwald et al. 1995; Horwitz et al. 1995].

Semantics Abstraction. Semantics abstraction [Feng et al. 2017; Feser et al. 2015; Polikarpova

et al. 2016; Wang et al. 2017] is also used in program synthesis to speed up (program) search

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

157:22 Chenglong Wang, Alvin Cheung, and Rastislav Bodik

space traversal, where program synthesizers compute space refinement constraints using abstract

semantics of the target language to perform search space pruning. In program synthesis, such

space refinement constraints are computed from (1) user specifications of the target program (logic

formulas [Polikarpova et al. 2016] or input-output examples [Feng et al. 2017; Feser et al. 2015;

Wang et al. 2017]) and (2) currently synthesized partial programs. The refinement constraints

capture properties of partial programs and allow the synthesizer to partition and prune the search

space before reaching complete programs. In symbolic reasoning tasks, provenance predicates are

computed from the verification condition and the target programs, which are then used to break

semantic symmetry in the (table) search space. While different, studying the relationship between

the two types of refinement constraints in these scenarios offers an interesting future work.

Verification of Database Applications. Mediator [Wang et al. 2018] is a tool for reasoning about

database applications with updates. The SparkLite verifier [Grossman et al. 2017] is an SMT-based

tool for checking MapReduce program equivalence. Both approaches check program equivalences

by inferring program invariants. Our space refinement algorithm currently can only speedup the

type of assertions defined in section 2 but not general invariants. Generalizing our symmetry

breaking algorithm to richer assertions is an interesting future work.

8 CONCLUSION
In this paper, we introduced a space refinement algorithm for symbolic SQL reasoning. At the

algorithm’s core are: a symbolic provenance analysis module that analyzes which tuples in the

input table contribute to the multiplicities of the target tuples in query outputs, and a space

refinement module that refines the search space with the provenance information. Our experiments

on bounded SQL verification, test data generation and concolic testing show that the refined search

space effectively speeds up the symbolic reasoning process.

A SEARCH SPACE ENCODING
We discuss how Qex and Cosette represent the search space, and how we encode the refined search

space in these tools.

Representation of S. Qex encodes the search space based on the exact number of tuples allowed

in the table, and the search space of all tables containing k tuples is encoded as a list of tuples

where each tuple is a list of symbolic values. For example, given the schema Bonus(Job:int, Dept:int,
Sal:int), the space of all tables with 3 tuples is encoded as the symbolic table BonusQ in Figure 11,

where each value si j in the table is a symbolic integer. To encode the search space consisting of

all tables with at most k tuples, Qex would iteratively increase the number of tuples from 0 to k
and check the verification condition separately. Since the order of tuples in a table does not matter,

Qex adopts a set of encoding constraints to break the encoding symmetry by asserting a canonical

order of the tuples in the table. These constraints avoid the solver to encode the same table multiple

times with a different order of tuples in the content.

Cosette differs from Qex by explicitly encoding the multiplicities of the tuples in the symbolic

table, and a symbolic table with k entries in Cosette represents the search space of all tables with

at most k distinct tuples. The symbolic table BonusC in Figure 11 shows how Cosette encodes all

tables with the schema Bonus containing at most 3 different tuples, and Cosette adopts a similar

encoding constraints as Qex to reduce encoding symmetry. Compared to Qex, Cosette’s encoding

approach has the benefit of being able to compress the encoding for tables containing multiple

identical tuples, e.g., a table with 100 identical tuples is represented with only one symbolic tuple

with multiplicity 100. On the other hand, the use of multiplicity also makes representing tables

without repeating tuples less compressed.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

Speeding up Symbolic Reasoning for Relational Queries 157:23

BonusQ
job dept sal
s11 s12 s13
s21 s22 s23
s31 s32 s33

encoding constraints:

(s21, s22, s23) ≥ (s11, s12, s13)
∧ (s31, s32, s33) ≥ (s21, s22, s23)

BonusC
job dept sal mult
s11 s12 s13 m1

s21 s22 s23 m2

s31 s32 s33 m3

encoding constraints:

(m1 ≥ 0) ∧ (m2 ≥ 0) ∧ (m3 ≥ 0)
∧(s21, s22, s23) ≥ (s11, s12, s13)
∧(s31, s32, s33) ≥ (s21, s22, s23)

Fig. 11. The encoding of the search space of all tables containing 3 tuples by Qex (BonusQ), and the encoding
of the search space of all tables containing at most 3 tuples in Cosette (BonusC). Both encodings adopt a set
of encoding constraints to reduce the encoding symmetry.

Representation of S′. The reduced search space generated from S is encoded similarly. We encode

the refined search space S′ by adding additional assertions to the encoding constraints.

We first introduce a new symbolic tuple tO = (a1, . . . ,an), where n is the number of columns in

the output of q1 and q2, and then assert the constraint ϕ (t , tO) for each tO that encodes S.

For example, assume the provenance of a query whose output has two columns (denoted as tO .1
and tO .2) is ϕ (t , tO) = (t .Job = tO .1∧ t .Sal > 5) (for the Bonus table above). To encode the refined
search space S′ using ϕ, we first introduce two new symbolic values (a1,a2) to model tO , and add

the following assertion in addition to the encoding constraint:

(s11 = a1 ∧ s12 > 5) ∧ (s21 = a1 ∧ s22 > 5) ∧ (s31 = a1 ∧ s32 > 5)

Alternatively, we can also simplify the encoding by eliminating redundant symbolic values, e.g.,

replacing all si1 with a1 in the example above.

ACKNOWLEDGMENTS
This work is supported in part by the National Science Foundation through grants IIS-1546083,

IIS-1651489, OAC-1739419, CCF-1139138, CCF-1337415, NSF ACI-1535191, and NSF 16-606; DARPA

award FA8750-16-2-0032 and FA8750-14-C-0011; DOE award DE-SC0016260 and FOA-0000619; the

Intel-NSF CAPA center; the CONIX Research Center, one of six centers in JUMP, a Semiconductor

Research Corporation (SRC) program sponsored by DARPA; as well as gifts from Google, Intel,

Mozilla, Nokia, Qualcomm, and Huawei. We would also like to thank Shumo Chu, Dan Suciu,

and Emina Torlak for insightful discussions in early stage of the project, as well as anonymous

reviewers for their valuable comments on paper revising.

REFERENCES
Amol Bhangdiya, Bikash Chandra, Biplab Kar, Bharath Radhakrishnan, KVMaheshwara Reddy, Shetal Shah, and S Sudarshan.

2015. The XDa-TA system for automated grading of SQL query assignments. In Data Engineering (ICDE), 2015 IEEE 31st
International Conference on. IEEE, 1468–1471.

Rajendra Bose and James Frew. 2005. Lineage retrieval for scientific data processing: a survey. ACM Comput. Surv. 37, 1
(2005), 1–28. https://doi.org/10.1145/1057977.1057978

Peter Buneman, Adriane Chapman, and James Cheney. 2006. Provenance management in curated databases. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, Chicago, Illinois, USA, June 27-29, 2006. 539–550.
https://doi.org/10.1145/1142473.1142534

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

https://doi.org/10.1145/1057977.1057978
https://doi.org/10.1145/1142473.1142534

157:24 Chenglong Wang, Alvin Cheung, and Rastislav Bodik

Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. 2001. Why and Where: A Characterization of Data Provenance.

In Database Theory - ICDT 2001, 8th International Conference, London, UK, January 4-6, 2001, Proceedings. 316–330.
https://doi.org/10.1007/3-540-44503-X_20

Bikash Chandra, Bhupesh Chawda, Biplab Kar, K. V. Maheshwara Reddy, Shetal Shah, and S. Sudarshan. 2015. Data generation

for testing and grading SQL queries. VLDB J. 24, 6 (2015), 731–755. https://doi.org/10.1007/s00778-015-0395-0
Satish Chandra, Stephen J. Fink, and Manu Sridharan. 2009. Snugglebug: a powerful approach to weakest preconditions.

In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2009,
Dublin, Ireland, June 15-21, 2009, Michael Hind and Amer Diwan (Eds.). ACM, 363–374. https://doi.org/10.1145/
1542476.1542517

Surajit Chaudhuri and Moshe Y. Vardi. 1993. Optimization of Real Conjunctive Queries. In Proceedings of the Twelfth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May 25-28, 1993, Washington, DC, USA. 59–70.
https://doi.org/10.1145/153850.153856

Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. 2011. Partial Replay of Long-running Applications. In

Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering
(ESEC/FSE ’11). 135–145.

Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung. 2017a. Cosette: An Automated Prover for SQL. In

CIDR 2017, 8th Biennial Conference on Innovative Data Systems Research, Chaminade, CA, USA, January 8-11, 2017, Online
Proceedings. http://cidrdb.org/cidr2017/papers/p51-chu-cidr17.pdf

Shumo Chu, Konstantin Weitz, Alvin Cheung, and Dan Suciu. 2017b. HoTTSQL: proving query rewrites with univalent SQL

semantics. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18-23, 2017. 510–524. https://doi.org/10.1145/3062341.3062348

E. F. Codd. 1970. A Relational Model of Data for Large Shared Data Banks. Commun. ACM 13, 6 (June 1970), 377–387.

Sara Cohen. 2009. Equivalence of queries that are sensitive to multiplicities. VLDB J. 18, 3 (2009), 765–785. https:
//doi.org/10.1007/s00778-008-0122-1

Sara Cohen, Werner Nutt, and Yehoshua Sagiv. 2007. Deciding equivalences among conjunctive aggregate queries. J. ACM
54, 2 (2007), 5. https://doi.org/10.1145/1219092.1219093

James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy. 1996. Symmetry-Breaking Predicates

for Search Problems. In Proceedings of the Fifth International Conference on Principles of Knowledge Representation and
Reasoning (KR’96), Cambridge, Massachusetts, USA, November 5-8, 1996. 148–159.

Yingwei Cui, Jennifer Widom, and Janet L. Wiener. 2000. Tracing the lineage of view data in a warehousing environment.

ACM Trans. Database Syst. 25, 2 (2000), 179–227. https://doi.org/10.1145/357775.357777
David Déharbe, Pascal Fontaine, Stephan Merz, and Bruno Woltzenlogel Paleo. 2011. Exploiting Symmetry in SMT Problems.

In Automated Deduction - CADE-23 - 23rd International Conference on Automated Deduction, Wroclaw, Poland, July 31 -
August 5, 2011. Proceedings. 222–236. https://doi.org/10.1007/978-3-642-22438-6_18

Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. 1995. Demand-driven Computation of Interprocedural Data Flow.

In Conference Record of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Francisco, California, USA, January 23-25, 1995, Ron K. Cytron and Peter Lee (Eds.). ACM Press, 37–48. https:
//doi.org/10.1145/199448.199461

Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. 2017. Component-based synthesis of

table consolidation and transformation tasks from examples. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017. 422–436. https:
//doi.org/10.1145/3062341.3062351

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing data structure transformations from input-output

examples. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation,
Portland, OR, USA, June 15-17, 2015. 229–239. https://doi.org/10.1145/2737924.2737977

Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. 2007. Update Exchange with Mappings and

Provenance. In Proceedings of the 33rd International Conference on Very Large Data Bases, University of Vienna, Austria,
September 23-27, 2007. 675–686. http://www.vldb.org/conf/2007/papers/research/p675-green.pdf

Shelly Grossman, Sara Cohen, Shachar Itzhaky, Noam Rinetzky, and Mooly Sagiv. 2017. Verifying Equivalence of Spark

Programs. In Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part II. 282–300. https://doi.org/10.1007/978-3-319-63390-9_15

Bhanu Pratap Gupta, Devang Vira, and S. Sudarshan. 2010. X-data: Generating test data for killing SQL mutants. In

Proceedings of the 26th International Conference on Data Engineering, ICDE 2010, March 1-6, 2010, Long Beach, California,
USA. 876–879. https://doi.org/10.1109/ICDE.2010.5447862

Susan Horwitz, Thomas W. Reps, and Shmuel Sagiv. 1995. Demand Interprocedural Dataflow Analysis. In SIGSOFT ’95,
Proceedings of the Third ACM SIGSOFT Symposium on Foundations of Software Engineering, Washington, DC, USA, October
10-13, 1995. 104–115. https://doi.org/10.1145/222124.222146

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

https://doi.org/10.1007/3-540-44503-X_20
https://doi.org/10.1007/s00778-015-0395-0
https://doi.org/10.1145/1542476.1542517
https://doi.org/10.1145/1542476.1542517
https://doi.org/10.1145/153850.153856
http://cidrdb.org/cidr2017/papers/p51-chu-cidr17.pdf
https://doi.org/10.1145/3062341.3062348
https://doi.org/10.1007/s00778-008-0122-1
https://doi.org/10.1007/s00778-008-0122-1
https://doi.org/10.1145/1219092.1219093
https://doi.org/10.1145/357775.357777
https://doi.org/10.1007/978-3-642-22438-6_18
https://doi.org/10.1145/199448.199461
https://doi.org/10.1145/199448.199461
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/2737924.2737977
http://www.vldb.org/conf/2007/papers/research/p675-green.pdf
https://doi.org/10.1007/978-3-319-63390-9_15
https://doi.org/10.1109/ICDE.2010.5447862
https://doi.org/10.1145/222124.222146

Speeding up Symbolic Reasoning for Relational Queries 157:25

Mauro Negri, Giuseppe Pelagatti, and Licia Sbattella. 1991. Formal Semantics of SQL Queries. ACM Trans. Database Syst. 16,
3 (1991), 513–534. https://doi.org/10.1145/111197.111212

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program synthesis from polymorphic refinement types.

In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016,
Santa Barbara, CA, USA, June 13-17, 2016. 522–538. https://doi.org/10.1145/2908080.2908093

Yehoshua Sagiv and Mihalis Yannakakis. 1980. Equivalences Among Relational Expressions with the Union and Difference

Operators. J. ACM 27, 4 (1980), 633–655. https://doi.org/10.1145/322217.322221
Max Schäfer and Oege de Moor. 2010. Type inference for datalog with complex type hierarchies. In Proceedings of the 37th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010, Madrid, Spain, January 17-23,
2010. 145–156. https://doi.org/10.1145/1706299.1706317

Shetal Shah, S. Sudarshan, Suhas Kajbaje, Sandeep Patidar, Bhanu Pratap Gupta, and Devang Vira. 2011. Generating test

data for killing SQL mutants: A constraint-based approach. In Proceedings of the 27th International Conference on Data
Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany. 1175–1186. https://doi.org/10.1109/ICDE.2011.
5767876

Haruto Tanno, Xiaojing Zhang, Takashi Hoshino, and Koushik Sen. 2015. TesMa and CATG: automated test generation tools

for models of enterprise applications. In Proceedings of the 37th International Conference on Software Engineering-Volume
2. IEEE Press, 717–720.

Emina Torlak and Rastislav Bodík. 2014. A lightweight symbolic virtual machine for solver-aided host languages. In ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June
09 - 11, 2014. 530–541. https://doi.org/10.1145/2594291.2594340

Margus Veanes, Pavel Grigorenko, Peli de Halleux, and Nikolai Tillmann. 2009. Symbolic Query Exploration. In Formal
Methods and Software Engineering, 11th International Conference on Formal Engineering Methods, ICFEM 2009, Rio de
Janeiro, Brazil, December 9-12, 2009. Proceedings. 49–68. https://doi.org/10.1007/978-3-642-10373-5_3

Margus Veanes, Nikolai Tillmann, and Jonathan de Halleux. 2010. Qex: Symbolic SQL Query Explorer. In Logic for
Programming, Artificial Intelligence, and Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal, April 25-May
1, 2010, Revised Selected Papers. 425–446. https://doi.org/10.1007/978-3-642-17511-4_24

Chenglong Wang, Alvin Cheung, and Rastislav Bodík. 2017. Synthesizing highly expressive SQL queries from input-output

examples. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18-23, 2017. 452–466. https://doi.org/10.1145/3062341.3062365

Yuepeng Wang, Isil Dillig, Shuvendu K. Lahiri, and William R. Cook. 2018. Verifying equivalence of database-driven

applications. PACMPL 2, POPL (2018), 56:1–56:29. https://doi.org/10.1145/3158144

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 157. Publication date: November 2018.

https://doi.org/10.1145/111197.111212
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/322217.322221
https://doi.org/10.1145/1706299.1706317
https://doi.org/10.1109/ICDE.2011.5767876
https://doi.org/10.1109/ICDE.2011.5767876
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1007/978-3-642-10373-5_3
https://doi.org/10.1007/978-3-642-17511-4_24
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1145/3158144

	Abstract
	1 Introduction
	2 Problem Definition
	3 Overview
	3.1 Provenance Analysis
	3.2 Space Refinement

	4 Definitions
	5 Algorithm
	5.1 Symbolic Provenance Analysis
	5.2 Space Refinement

	6 Evaluation
	6.1 Experiment 1: Bounded Verification
	6.2 Experiment 2: Test Data Generation
	6.3 Experiment 3: Concolic Testing

	7 Related Work
	8 Conclusion
	A Search Space Encoding
	Acknowledgments
	References

