
Research Statement

Chenglong Wang
University of Washington

I work on empowering data scientists to solve complex programming tasks. Specifically, I apply program
synthesis techniques to build tools that help data scientists solve challenging data manipulation and visu-
alization tasks without programming. Data manipulation and visualization support data scientists’ efforts
to explore and understand data throughout the analysis process (e.g., to detect outliers during data col-
lection and to conceptualize models during statistical analysis), since such exploratory analyses are their
step stones for more complex analysis results and insights. While experienced data scientists can often
achieve efficient, flexible and reusable exploratory analysis using programming systems like SQL and R, in-
experienced users often struggle to achieve similar results using only interactive tools. My research builds
synthesis-powered tools – tools that synthesize programs from examples or partial task specifications – to
bridge the gap between interactive data analysis tools (like Excel, Tableau) and programming systems (SQL,
R) so that data scientists can solve complex exploratory data analysis tasks they cannot easily solve other-
wise. My long-term goal is to democratize programming with program synthesis to allow data scientists to
achieve all analysis tasks they can do today only with programming systems.

My dissertation research solves the following challenges data scientists often encounter during ex-
ploratory data analysis:

• Many data manipulation tasks involve querying databases using advanced SQL features, like aggre-
gation, subqueries and outer-joins, that many data scientists lack knowledge about. To allow easy
access to relational databases, I developed Scythe [11], a SQL query synthesizer that synthesizes
queries from input-output examples, a common medium Stack Overflow users use to describe ques-
tions (Figure 1.1). To enable Scythe to efficiently explore the combinatorial search space, I developed
an abstraction of SQL that helps Scythe reason about realizability of user specifications in parts of
the search space and dramatically prune infeasible ones. When tested on a collection of 193 real-
world tasks from Stack Overflow, Scythe solved 70% of the tasks (compared to 48% which previous
algorithms support). Scythe was also 52× faster on average for tasks that previous algorithms solved.

• While Scythe makes data manipulation easy, creating expressive visualizations also requires data sci-
entists to know a considerable amount about plotting tools to implement their designs and drive data
transformation. To empower users who had neither data transformation or visualization experience
to create expressive visualizations, I developed Falx [13], a visualization-by-example tool that can au-
tomatically synthesize programs to both prepare and visualize data from user demonstrations (Figure
1.2). Falx features a compositional synthesis algorithm that breaks down the overall synthesis process
across two languages (i.e., the data transformation language and the visualization language) into small
tasks that it can efficiently reason about. Furthermore, to make Falx usable, Falx is equipped with an
exploration interface that lets users efficiently explore synthesized programs in the visualization space,
overcoming the trust issue that users often have when interacting with previous synthesis tools [5].
Our study of Falx use by 33 data scientists shows that users can effectively and confidently adopt Falx
to create visualizations that they otherwise could not implement due to their lack of programming
expertise.

• Data scientists need more than programming skills to create visualizations that can faithfully deliver
their insights: they also need design knowledge to properly configure their visualizations (e.g., axes
type, graphical mark type). To reduce the barriers to creating good designs, I developed Draco [6],
a design recommendation engine that recommends effective designs from users’ partial visualization
specifications (Figure 1.3). Draco formulates design principles as logic constraints and utilizes a logic

1



Figure 1: (1) Scythe: SQL query synthesizer from input-output examples, (2) Falx: synthesizing visualiza-
tions from demonstrations, and (3) Draco: visualization design recommendation from partial visualizations.

deduction engine to synthesize designs that maximize their effectiveness scores. It was the first exten-
sible visualization recommendation system, and it can recommend designs from a much larger design
space (2.5× larger with the same time limit of 1 second) compared to prior state-of-the art systems
due to its logic formulation.

Below is a detailed view of my work and how it leads to my high-level research goal.

1 Synthesizing SQL Queries from Input-Output Examples

SQL is the de facto language for querying relational databases, and data scientists often need to use ad-
vanced operators (e.g., aggregation, outer-join, subqueries) to solve complex data manipulation tasks (e.g.,
computing argmax, removing duplicates). Though expressive, these operators are challenging to use, as
evidenced by over 10,000 posts on Stack Overflow about these features. From these posts, I made the key
observation that Stack Overflow users could often concisely describe their tasks using small input-output
examples. This motivated me to develop Scythe, a SQL synthesizer that can synthesize SQL queries from
small input-output examples to manipulate relational data, as forum experts can do.

The key barrier of building a practical SQL synthesizer is scalability. Prior approaches that rely on de-
composability of operators to scale up are not applicable to SQL (since many SQL operators are irreversible);
search-based algorithms alone are prohibitively expensive to use due to the particularly large search space
imposed by SQL and the high overhead of memoizing SQL query outputs. To address this challenge, our
key insight is to develop an abstraction of SQL to grant Scythe the power to reason about partial queries
(queries with unfilled parameters) to allow aggressive early pruning. Concretely, given a partial query,
the abstraction allows Scythe to propagate input data through it to derive an over approximation output
to summarize all possible outputs that could come from queries instantiated from it. Scythe then checks
the consistency between the over-approximation output and the user’s output example to decide whether
the partial query could lead to a correct solution and prune the whole subspace if not. This design lets
Scythe dramatically prune the search space (with an average reduction of 2145× in our evaluation) with
little overhead.

When tested on 193 tasks users posted in Stack Overflow, Scythe successfully solved 143 tasks (51 more
than the prior state-of-the-art approach solved) and achieved an average speedup of 52× (7× to 200×) on
tasks that both algorithms can solve. In fact, compared to the typical expert response time of 5 to 20 minutes
on Stack Overflow, Scythe’s ability to solve most tasks in 1 minute shows its potential to increase end-user
productivity.

2



2 Synthesis-Powered Visualization Authoring

While both data transformation tools and visualization tools have been designed to reduce visualization
efforts, creating expressive visualizations remains challenging: data transformation and visualization spec-
ification are two closely related tasks in exploratory analysis, requiring users to be experienced with both
types of tools and iterate between them throughout the analysis process. This motivated me to develop Falx,
a visualization synthesizer that can synthesize data transformation and visualization in one pass to reduce
the visualization barrier.

To design an input specification that is both expressive and easy-to-use, I conducted a formative study
asking participants to illustrate visualization tasks on paper. The observation that participants could easily
describe visualization ideas using partial sketches motivated me to design a new programming-by-example
specification, which asked users to provide partial sketches in the form of example mappings from a few
input points to visual channels (i.e., graphical mark attributes like x, y-positions and color) to demonstrate
their tasks. This specification generalizes the expressiveness of modern visualization grammars (mappings
from columns to visual channels), allowing users to specify visualizations regardless of whether the input
data is in the appropriate layout that matches the design.

From the algorithmic perspective, Falx faces two new synthesis challenges: (1) it needs to synthesize
programs from two languages (visualization and data transformation languages) as opposed to one, and (2)
it needs to synthesize programs from a weaker specification that consists of inputs and partial outputs as
opposed to input and full output pairs. To solve the first problem, I decomposed the synthesis task into
a visualization decompilation task and a data transformation synthesis task with the design of an inverse
semantics for the visualization language; doing so lets Falx backwardly infer visualization programs directly
from user demonstrations and breaks down the synthesis complexity. Then, to speed up data transforma-
tion synthesis, I took inspiration from bidirectional program analysis and devised a bidirectional analysis
approach for Falx to better reason about partial programs. Besides propagating values forwardly from
input to over-approximate outputs of partial programs (as Scythe did), it also propagates output values
backwardly to compute an under-approximation of the input. This approach lets Falx derive these stronger
constraints to discovery pruning opportunities that previous algorithms cannot. In evaluation, Falx solved
70 of 84 real-world visualization tasks within 20 seconds, while unidirectional abstraction only solved 49
out of 84 tasks.

Finally, to enable practical use, Falx needs to let users efficiently distinguish the correct program from
other solutions that satisfy user demonstrations but do not generalize it correctly. This is known as the
“disambiguation problem”, which limits practical use of many program synthesis tools [5]. Instead of asking
users to read and disambiguate synthesized programs, Falx transforms the challenging program disam-
biguation problem into a visualization exploration problem with its design of an exploration interface that
lets users navigate solutions in the visualization space. Using the exploration interface, users can coarsely
scan all designs to quickly rule out visualizations with high-level errors (e.g., wrong axes or labels) and
then side-by-side compare similar ones in detail to choose the desired solution. By combining an efficient
synthesis algorithm and a novel interface design, in our user study with 33 participants, Falx users showed
statistically significant efficiency improvements on two challenging visualization tasks compared to users
of R. Participants found that Falx was “easy to learn,” “fast” and “can generate something that you cannot
easily do otherwise,” and they were “confident about solutions.”

3 Visualization Design Recommendation

Falx allows data scientists to implement visualizations easily. In addition, users need design knowledge to
make visualizations convey data insights faithfully and effectively. For example, the choice of many low-level
visualization parameters like axis type (categorical, temporal or quantitative), starting a scale from zero or
not, and using binning on an axis or not all matter, and improper designs can lead to confusing or even
misleading presentations [7]. To allow non-experts with limited design knowledge to benefit from design
principles that visualization research produced, I collaborated with my colleagues in visualization research
and built Draco, a visualization recommendation engine that automatically suggests principally designed
visualizations from partial specifications.

The key challenge in building Draco was how to model design knowledge in a formal way to enable

3



automatic reasoning and in an extensible way to allow Draco to adapt to new designs principles from visu-
alization research. Drawing inspiration from formal methods research, our key insight was to model design
knowledge as logic constraints to achieve both formality and extensibility. With this design, visualization ex-
perts can specify design principles in logical constraints consisting of (1) hard integrity and expressiveness
constraints to prevent unfaithful designs, and (2) soft preference constraints to trade-off between different
design guidelines. For end users, Draco compiles users’ partial specifications into logical facts and uses a
Max-SAT solver to infer designs that both satisfy hard constraints and maximize soft constraints to generate
recommendations.

For evaluation, we used Draco to rebuild previous design recommendation systems that were imple-
mented in low-level programming languages. Results showed that Draco allowed concise design principle
specification (from 4,323 lines of code to 180 lines of logic rules), and it was more scalable (it explored
2.5× more search space with the same 1 second timeout). To test extensibility, we extended Draco to sup-
port task-driven recommendation from the base system. We implemented 20 new rules in a few hours and
then trained Draco using data from an empirical study (1,100 pairs of visualizations rated by designers) to
achieve 97% test accuracy for a design recommendation task. In addition to its recommendation power,
Draco was also used as a platform to study interactions between design rules and implications of empirical
studies.

4 Other Research

My HCI colleagues and I also applied program synthesis to solve the mobile layout design challenge. After
observing that designers lack tools to efficiently explore the design space to prototype diverse layouts (which
is essential for creating high-quality designs), we created a design exploration tool, Scout [9], which lets
users explore mobile layout designs using high-level constraints based on design concepts (e.g., semantic
structure, emphasis, order). Compared to prior constraint-based layout systems, which use low-level spatial
constraints and generally produce a single design, Scout can efficiently synthesize a large set of principally
designed layouts for exploration. In an evaluation with 18 interface designers, we found that Scout helps
designers: (1) create more spatially diverse mobile interface layouts with similar quality to those created
with a baseline tool, and (2) avoid a linear design process and quickly ideate layouts they do not believe
they would have thought of on their own.

In addition to synthesis, I also broadly apply programming reasoning techniques to solve verification and
testing problems. For example, I built a symbolic engine for SQL query equivalence checking – a known
undecidable problem with many applications (e.g., verification of optimization rule correctness, super-
optimization). Our solution, Cosette [2], leverages recent advances in both automated constraint solving
and interactive theorem proving; it returns a counterexample (in terms of input relations) if two queries
are not equivalent or a proof of equivalence otherwise. The key to scaling up Cosette is the integration
of provenance analysis into constraint encoding to dramatically reduce symmetry in the search space, al-
lowing efficient solving [12]. With these designs, despite general undecidability, Cosette can determine
the equivalences of a wide range of queries that arise in practice that no previous approach can tackle,
including conjunctive queries, correlated queries, queries with outer joins, and queries with aggregates. In
evaluation, Cosette proved the validity of magic set rewrites and confirmed various real-world query rewrite
errors, including the famous COUNT bug.

I also applied symbolic reasoning techniques for neural network safety testing and verification [10]. Mo-
tivated by the need to improve our understanding of the failures of commonly used Sequence-to-Sequence
and Image-to-Sequence models, we studied the novel output-size modulation problem. First, to evaluate
model robustness, we developed an easy-to-compute differentiable proxy objective that could be used with
gradient-based algorithms to find output-lengthening inputs. Second and more importantly, we developed
a verification approach based on convex over-approximation of neural operators that could formally ver-
ify whether a network always produces outputs within a certain length. Experimental results on Machine
Translation and Image Captioning showed that our output-lengthening approach can produce outputs that
are 50 times longer than the input, while our verification approach can, given a model and input domain,
prove that output length is below a certain size.

4



5 What’s Next?

In the future, I plan to develop the next generation of synthesis-powered tools to empower data scientists
to solve even more challenging and more influential problems. One example task is authoring of interactive
data reports. Because interactive reports can cohesively present relations of large datasets and provide
readers with on-demand access to metrics of interest, they offer data insights more effectively than static
reports. Due to their innate complexities, especially the need to manage correlated datasets and specify
interactions, even new programming tools (like D3 and R Shiny) leave customized interactive reports only
within reach of professional programmers. As interactive reports gaining popularity amongst data scientists
who are not professional programmers (e.g., journalists for digital news, business people for monitoring
sales trends, epidemiologists for analysis of pandemic trends, and scientists for interactive publication [8]),
traditional ways to create interactive reports are no longer sufficient. If we can develop a synthesizer for
interactive reports, we can democratize interactive reports and broaden the impact of data science.

These opportunities challenge program synthesis research. In particular, existing synthesizers lack
(1) the scalability to synthesize programs over large languages and inputs, and (2) the expressiveness to
let users concisely specify complex designs. For example, since interactive report authoring processes
often involve processing large datasets using complex operators (e.g., analytical functions like window-
aggregation), both the search space and the cost of deductive reasoning would grow exponentially, and
existing synthesizers designed for standard operators and small input-output would not scale up. Also,
since interactive reports often involve complex designs like multi-view visualizations and interactive wid-
gets, existing interfaces like input-output examples or natural languages alone are insufficient to capture
user intent. I plan to develop the next generation of program synthesizers to address these challenges from
the following three perspectives:

• Abstraction Learning. Good language abstractions are key to scaling up synthesis algorithms since
they let synthesizers reason about realizability of user specifications in a sub-search-space to find
opportunities for dramatic pruning [12]. With the need to design robust abstractions for new opera-
tors or abstractions that support compositional reasoning across languages for challenging synthesis
tasks, current practices of manual abstraction design no longer suffice. Instead, I plan to investigate
abstraction learning approaches to allow automatic discoveries of optimal abstractions that adapt to
different scenarios. Concretely, I plan to build a reinforcement learning based abstraction learning
framework with the following components: (1) a symbolic compiler that can enumerate and propose
sound abstractions for given operators, (2) a sampling-based evaluator that assesses quality of ab-
stractions from sampled synthesis tasks, and (3) a continuous optimizer that optimizes and guides the
discovery of new abstractions. In fact, our recent work showed that we could approximate language
abstractions using continuous functions [1, 4], which indicated the potential to solve the abstraction
search problem with continuous optimization.

• Multimodal Program Synthesis. In addition to better search algorithms, allowing users to provide
richer task information would also help synthesizers better break the search space down to improve
scalability. As the first step, I plan to design an interface that lets users demonstrate computation
processes (e.g., using example formulas) besides concrete values to solve the analytical query syn-
thesis problem, a key ingredient for building an expressive interactive report synthesizer. With these
computation demonstrations, the synthesis algorithm can infer subroutines and conduct anchored
search space exploration around them to improve efficiency. I will also collaborate with NLP and HCI
colleagues to explore hybrid interfaces (e.g., sketching, dialog systems) to let users and computers
collaboratively solve challenging programming tasks.

• Incremental Specification. Since I aim to target more complex design synthesis problems, it is no
longer ideal to ask users to specify their ideas from scratch. Inspired by observations that software
developers often copy, paste and adapt ad hoc code snippets to solve new tasks, I plan to build synthe-
sizers that can synthesize programs from users’ demonstrations of how to adapt an existing design to
their needs and use this as the tool to solve the challenge of specifying interactive designs. To achieve
this goal, I will first incorporate bidirectional programming techniques [3] to propagate user demon-
strations from the canvas to program parameters and infer parameter dependencies to constrain the
adaptation space to explore. I will then incorporate Draco’s approach to explore this adaptation space

5



to recommend principled designs that are consistent with user specifications. With such an interactive
specification interface, synthesizers will be able to incrementally solve complex tasks with minimal
specification overhead from users.

Finally, I will assemble this research into a meta program synthesis framework and a general methodol-
ogy for user-synthesizer interface design to make it easy to build synthesis-powered tools for new domains. I
plan to apply this meta synthesizer to empower designers and developers in other fields to solve challenging
programming tasks. For example, I will help mobile application designers directly realize graphical designs
in software implementations, allow 3D model creators to create reusable parametric components from 3D
meshes, and enable robot agents to distill reusable logic routines from neurally trained continuous models.

References

[1] Yanju Chen, Chenglong Wang, Osbert Bastani, Isil Dillig, and Yu Feng. Program synthesis using
deduction-guided reinforcement learning. In Computer Aided Verification - 32nd International Con-
ference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II, volume 12225 of
Lecture Notes in Computer Science, pages 587–610. Springer, 2020.

[2] Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung. Cosette: An automated prover for
SQL. In CIDR 2017, 8th Biennial Conference on Innovative Data Systems Research, Chaminade, CA,
USA, January 8-11, 2017, Online Proceedings. www.cidrdb.org, 2017.

[3] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. Programmatic and direct manipula-
tion, together at last. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, pages 341–354.
ACM, 2016.

[4] Hanjun Dai, Yujia Li, Chenglong Wang, Rishabh Singh, Po-Sen Huang, and Pushmeet Kohli. Learning
transferable graph exploration. In Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019,
Vancouver, BC, Canada, pages 2514–2525, 2019.

[5] Tessa Lau. Why programming-by-demonstration systems fail: Lessons learned for usable AI. AI Maga-
zine, 30(4):65–67, 2009.

[6] Dominik Moritz, Chenglong Wang, Greg L. Nelson, Halden Lin, Adam M. Smith, Bill Howe, and Jeffrey
Heer. Formalizing visualization design knowledge as constraints: Actionable and extensible models in
draco. IEEE Trans. Vis. Comput. Graph., 25(1):438–448, 2019.

[7] Anshul Vikram Pandey, Katharina Rall, Margaret L. Satterthwaite, Oded Nov, and Enrico Bertini. How
deceptive are deceptive visualizations?: An empirical analysis of common distortion techniques. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015,
Seoul, Republic of Korea, April 18-23, 2015, pages 1469–1478. ACM, 2015.

[8] Jeffrey M Perkel. Data visualization tools drive interactivity and reproducibility in online publishing.
Nature, 554(7690):133–134, 2018.

[9] Amanda Swearngin, Chenglong Wang, Alannah Oleson, James Fogarty, and Amy J. Ko. Scout: Rapid
exploration of interface layout alternatives through high-level design constraints. In CHI ’20: CHI
Conference on Human Factors in Computing Systems, Honolulu, HI, USA, April 25-30, 2020, pages
1–13. ACM, 2020.

[10] Chenglong Wang, Rudy Bunel, Krishnamurthy Dvijotham, Po-Sen Huang, Edward Grefenstette, and
Pushmeet Kohli. Knowing when to stop: Evaluation and verification of conformity to output-size speci-
fications. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019, pages 12260–12269. Computer Vision Foundation / IEEE, 2019.

6



[11] Chenglong Wang, Alvin Cheung, and Rastislav Bodík. Synthesizing highly expressive SQL queries
from input-output examples. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages 452–466.
ACM, 2017.

[12] Chenglong Wang, Alvin Cheung, and Rastislav Bodík. Speeding up symbolic reasoning for relational
queries. Proceedings of the ACM on Programming Languages, 2(OOPSLA):157:1–157:25, 2018.

[13] Chenglong Wang, Yu Feng, Rastislav Bodík, Alvin Cheung, and Isil Dillig. Visualization by example.
Proceedings of the ACM on Programming Languages, 4(POPL):49:1–49:28, 2020.

7


